

Design and Demonstrate an ESCO business model to promote EE motors in chemical industries in Gujarat

11th SAMEEEKSHA Meeting

 28^{th} July2016

Structure of the presentation

- **R**ationale
- Precursor: TERI-ICAI Initiative
- Selection of cluster
- **Given Summary of study**
- Study approach
- Proposed Vendor Based ESCO Model
- Proposed role of key stakeholders
- Key Financial Indicators

Rationale

- Electric motor systems account for about 55% of global industrial electricity consumption and close to 70% of industrial electricity demand.
- In India, about 45% of the total electricity generated is consumed by industries, of which 70% share is of electric motors.
- Electric motor driven systems include pumps, fans, compressors, blowers, agitators and so on.
- Energy efficient motors form a major component in contributing to the energy saving by way of increased efficiency of the system itself.

Motor – Efficiency standards

Efficiency Levels	Efficiency Classes	Testing Standard	Performance Standard
	IEC 60034-30	IEC 60034-2-1	Mandatory MEPS
		incl. stray load losses	
	Global 2008	2007	Policy Goal
Premium Efficiency	IE3	Low Uncertainty	USA 2011
			Canada 2011
			Europe* 2015 (>7.5 kW), 2017
High Efficiency	IE2		USA
			Canada
			Mexico
			Australia
			New Zealand
			Korea
			Brazil
			China 2011
			Switzerland 2011
			Europe 2011
Standard Efficiency	IE1	Medium Uncertainty	China
			Brazil
			Costa Rica
			Israel
			Taiwan
			Switzerland
Cu Association Inc Copper Alliance	dia		bold means in effect*) IE3 or IE2+VSD

Precursor: TERI-ICAI Initiative

• TERI and ICAI undertook a collaborative applied research project on "Promotion of Energy Efficient Motors in Chemical Industry in India".

Objective

- ✓ The objective of the study was to estimate the overall energy consumption and energy saving potential in electric motors at Ankleshwar Industrial Cluster
- ✓ Development and demonstration of identified energy conservation measures (i.e. high efficiency motors).

Selection of chemical cluster - Ankleshwar

- Ankleshwar chemical cluster constitute more than 1,200 industries manufacturing Dyes & Pigment, Pesticides, Pharma & API and other chemical products
- Cluster already sensitized on energy efficiency aspects during implementation of SIDBI-WB-GEF project

<u>Motor profile - Ankleshwar</u>

- Based on data, there are about 750 operational chemical units having population of about 12500 electric motors (3 – 125 hp).
- Most of the installed motors are standard category.

Summary of Study

- Average improvement in efficiency (for all capacities) is estimated to be 5.1%
- About 85% of the installed motors are below 20hp capacity.
- Estimated energy savings (up to 20 HP motors) 5.6%
- Simple payback period about 2 years
- Four units have already adopted HEM during assessment period.

Number of motors	No	454
Annual electricity	Mill Unite	10.2
consumption (ext)	MIII OIIIts	19.3
Annual electricity	Mill Unita	18.2
consumption (pro)	MIII UIIIts	
Annual electricity saving	Mill Unita	1 1
potential	MIII UIIIts	1.1
Monetary saving	Mill Rs	7.1
potential	/yr	
Investment required	Mill Rs	17.2
Simple payback period	year	2

Approach followed

Targeted category – up to 20 hp

Approach :

Designing an implementable scheme for penetration of high efficiency motors

Institutional mechanism : Vendor based ESCO model

Key features:

- ✓ Open to all: Any unit (new/existing) which is an industry association member
- ✓ All ESCOs/ Manufacturer/ System Integrator / OEMs can participate
- ✓ No initial investment for adoption of HEM
- ✓ ESCO's risk on investment is mitigated by Partial Risk Guarantee Fund by SIDBI
- ✓ Replicability in other MSMEs clusters

Role of key stakeholders

Copper Alliance

TERI	GEDA	ESCO/Technology Providers	Banks/FIs
 ✓ Providing overall technical support ✓ Monitoring of overall program ✓ Preparation of feasibility reports ✓ Maintaining and up and by a data beau 	 ✓ Creating awareness among units ✓ Disseminating results in other clusters ✓ Coordination with Industries Associations for development of SPV ✓ Providing financial incentives (if any) to participating units 	 ✓ Initial investment for HEM ✓ Installation of HEM ✓ Collection of payment from participating units ✓ Maintaining the services 	 ✓ Financial assistance to ESCOs ✓ PRGF to mitigate the risk of investment of ESCO
 Monitoring of implementation process Monitoring and 		 Associations (AIA/PIA) ✓ Repayment Assurance 	 Creating awareness among Motor manufacturer / supplier / integrator to participate in project
verification International Association I	Copper ndia	 ✓ Awareness among MSMEs HAKTI TAINABLE ENERGY 	

SUSTAINABLE ENERGY FOUNDATION

Key financial indicators

Particulars	Unit	Value
Number of motors (baseline study completed)	Nos	454
Average cost per motor	Rs.	37,885
Total project cost	Rs.	17,199,790
Particulars	Unit	Value
Project implementation period	Months	30
Estimated time for installation of motors	Months	12
Recovery period after installation (EMIs)	Months	18
Average EMI (per motor)	Rs./month	2472

Return on Investment (ROI) for ESCO – 10.2%

Thank You

Hemanth Kumar, International Copper Association India and Upinder S Dhingra, TERI

