DETAILED PROJECT REPORT
ON
RICE HUSK COGENERATION – 1000 kW
(WARANGAL RICE MILLING CLUSTER)

Bureau of Energy Efficiency
Prepared By APITCO LIMITED
COGENERATION SYSTEM (1 MW CAPACITY)

WARANGAL RICE CLUSTER
BEE, 2011

Detailed Project Report on Cogeneration system
Rice Milling SME Cluster, Warangal, Andhra Pradesh (India)
New Delhi: Bureau of Energy Efficiency;
Detail Project Report No.: WRG/RICE/COGEN/09

For more information
Bureau of Energy Efficiency (BEE)
(Ministry of Power, Government of India)
4th Floor, Sewa Bhawan
R. K. Puram, New Delhi – 110066

Telephone +91-11-26179699
Fax+91-11-26178352
Websites: www.bee-india.nic.in
Email: jsood@beenet.in/pktiwari@beenet.in
Acknowledgement

APITCO limited is sincerely thankful to the Bureau of Energy Efficiency, Ministry of Power, for giving us the opportunity to implement the BEE SME project in “Rice Milling Cluster, Warangal District of Andhra Pradesh”. We express our sincere gratitude to all concerned officials for their support and guidance during the conduct of this exercise.

Dr. Ajay Mathur, Director General, BEE
Smt. Abha Shukla, Secretary, BEE
Shri Jitendra Sood, Energy Economist, BEE
Shri Pawan Kumar Tiwari, Advisor (SME), BEE
Shri Rajeev Yadav, Project Economist, BEE

Andhra Pradesh Industrial & Technical Consultancy Organization Ltd. (APITCO) is also thankful to “Warangal Rice Millers Association, Warangal”, for their valuable inputs, cooperation, support and identification of the units for energy use and technology audit studies and facilitating the implementation of BEE SME program in Warangal Rice Milling Cluster.

We take this opportunity to express our appreciation for the excellent support provided by Rice making Unit Owners, Local Service Providers, and Equipment Suppliers for their active involvement and their valuable inputs in making the program successful and in completion of the Detailed Project Report (DPR).

APITCO Limited is also thankful to all the SME owners, plant in charges and all workers of the SME units for their support during the energy use and technology audit studies and in implementation of the project objectives.

APITCO Limited
Hyderabad

Contents

- **List of Annexure** vi
- **List of Figures** vi
- **List of Tables** vii
- **List of Abbreviation** viii
- **Executive summary** ix
- **About BEE’S SME program** x

1 INTRODUCTION

1.1 Brief Introduction about Cluster

1.1.1 Existing production process & Technology

1.2 Energy performance in existing system

1.2.1 Fuel consumption

1.2.2 Average annual production:

1.2.3 Specific energy consumption

1.3 Existing Technology / Equipment

1.3.1 Description of existing technology

1.3.2 Role in Process

1.4 Baseline establishment for existing technology

1.4.1 Design and operating parameters

1.4.2 Operating efficiency analysis

1.5 Barriers in adoption of proposed equipment

1.5.1 Technological barrier

1.5.2 Financial barrier

1.5.3 Skilled manpower

1.5.4 Any other barrier
2. PROPOSED EQUIPMENT FOR ENERGY EFFICIENCY IMPROVEMENT 10

2.1 Description of proposed equipment ... 10
2.1.1 Detailed of proposed equipment ... 10
2.1.2 Equipment/technology specifications .. 10
2.1.3 Suitability or Integration with existing equipment 10
2.1.4 Superiority over existing system .. 11
2.1.5 Availability of technology /equipment .. 11
2.1.6 Source of equipment ... 11
2.1.7 Service providers .. 11
2.1.8 Terms and Conditions in sales of equipment 11
2.1.9 Process down time .. 11
2.2 Life cycle assessment and risks analysis ... 11
2.3 Suitable unit /Plant for implementation of proposed technology 11

3. ECONOMIC BENEFITS FROM PROPOSED TECHNOLOGY 12

3.1 Technical benefit ... 12
3.1.1 Fuel savings .. 12
3.1.2 Improvement in product quality ... 12
3.1.3 Improvement in production ... 12
3.1.4 Reduction in raw material .. 12
3.1.5 Reduction in other losses .. 12
3.2 Monetary benefits ... 12
3.3 Social benefits .. 13
3.3.1 Improvement in working environment .. 13
3.3.2 Improvement in skill set of workers .. 13
3.4 Environmental benefits .. 13
3.4.1 Reduction in effluent generation .. 13
3.4.2 Reduction in GHG emissions such as CO2, NOx, etc ..13

3.4.3 Reduction in other emissions like Sox ..13

4. IMPLEMENTATION OF NEW EFFICIENT TECHNOLOGY14

4.1 Cost of technology implementation ..14

4.1.1 Cost of technology ...14

4.2 Arrangement of funds ..14

4.2.1 Entrepreneur’s contribution ..14

4.3 Financial indicators ...14

4.3.1 Cash flow analysis ..14

4.3.2 Simple payback period ..15

4.3.3 Net Present Value (NPV) ..15

4.3.4 Internal rate of return (IRR) ..15

4.3.5 Return on investment (ROI) ..15

4.4 Sensitivity analysis ..15

4.5 Procurement and implementation schedule ...16
List of Annexure

Annexure – 1: Energy audit reports used for establishing .. 17
Annexure – 2: Process flow diagram ... 19
Annexure – 3: Detailed technology assessment report ... 20
Annexure – 4: Detailed financial analysis ... 21
Annexure – 5: Details of technology service providers ... 25
Annexure – 6: Quotations of Techno-commercial bids for new Technology/equipment ... 26

List of figures

Figure 1: Existing boiler ... 5
List of Tables

Table 1 Average fuel and electricity consumption .. 3
Table 2 Average annual productions in raw rice mills ... 3
Table 3 Average annual production in Parboiled rice mills .. 4
Table 4 Specific energy consumption .. 4
Table 5 Boiler specifications: ... 5
Table 6 Electricity, Rice husk and diesel consumption ... 7
Table 8 Detail design of Co-generation system ... 10
Table 9 Cost of equipment .. 14
Table 10 Financial parameters ... Error! Bookmark not defined.
Table 11 Financial indication of proposed technology/equipment 15
Table 12 Sensitivity analysis at different scenarios .. 16
Table 13 Procurement and implementation Schedule .. 16
List of Abbreviations

- BEE - Bureau of Energy Efficiency
- DPR - Detailed Project Report
- DSCR - Debt Service Coverage Ratio
- GHG - Green House Gases
- HP - Horse Power
- IRR - Internal Rate of Return
- MoP - Ministry of Power
- MSME - Micro Small and Medium Enterprises
- NPV - Net Present Value
- ROI - Return On Investment
- MoMSME - Ministry of Micro Small and Medium Enterprises
- SIDBI - Small Industrial Development Bank of India
EXECUTIVE SUMMARY

Bureau of Energy Efficiency (BEE) appointed Andhra Pradesh Industrial Technical Consultancy Organization Limited as the executing agency for Rice Milling Cluster of Warangal under BEE’s SME programme. Under this project, the executing agency carried out studies in the Rice Milling cluster of Warangal. Out of a total of 110 rice mills, study was conducted in 30 units. Preliminary audits were done in all the 30 units whereas detailed energy audits were conducted in 30 of these units.

Based on the energy audits, the executing agency submitted their report to BEE in form of a cluster manual with recommendations for energy conservation & savings potentials in the Rice Milling units.

The existing system has an inefficient boiler which is being used to generate steam for the processing of rice. The proposed Cogeneration system is a system which has higher capacity, efficient boiler than the existing boiler. The steam generated from the system is of better quality and is used first in Power generation and then in the process. The proposed system consumes more fuel but the benefits from it are much more beneficial to the owners, which are being covered in the DPR.

This bankable DPR also found eligible for subsidy scheme of MoMSME for “Technology and Quality Upgradation Support to Micro, Small and Medium Enterprises” under “National Manufacturing and Competitiveness Programme”. The key indicators of the DPR including the Project cost, debt equity ratio, monetary benefit and other necessary parameters are given in table below:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Particular</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project cost</td>
<td>` (in Lakh)</td>
<td>314.06</td>
</tr>
<tr>
<td>2</td>
<td>Power saving</td>
<td>MW/year</td>
<td>8400</td>
</tr>
<tr>
<td>3</td>
<td>Monetary benefit</td>
<td>` (in Lakh)/ Year</td>
<td>92.40</td>
</tr>
<tr>
<td>4</td>
<td>Simple payback period</td>
<td>years</td>
<td>3.40</td>
</tr>
<tr>
<td>5</td>
<td>NPV</td>
<td>` (in Lakh)</td>
<td>66.06</td>
</tr>
<tr>
<td>6</td>
<td>IRR</td>
<td>%</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>ROI</td>
<td>%</td>
<td>19.68</td>
</tr>
<tr>
<td>8</td>
<td>DSCR</td>
<td>Ratio</td>
<td>1.44</td>
</tr>
<tr>
<td>9</td>
<td>Annual CO2 reduction</td>
<td>Tonne</td>
<td>1676.55</td>
</tr>
<tr>
<td>10</td>
<td>Procurement and implementation schedule</td>
<td>Week</td>
<td>12</td>
</tr>
</tbody>
</table>

The projected profitability and cash flow statements indicate that the project implementation i.e. installation of Cogeneration will be financially viable and technically feasible solution for the cluster.
ABOUT BEE’S SME PROGRAM

Bureau of Energy Efficiency (BEE) is implementing a BEE-SME Programme to improve the energy performance in 29 selected SMEs clusters. Warangal Rice milling unit Cluster is one of them. The BEE’s SME Programme intends to enhance the energy efficiency awareness by funding/subsidizing need based studies in SME clusters and giving energy conservation recommendations. For addressing the specific problems of these SMEs and enhancing energy efficiency in the clusters, BEE will be focusing on energy efficiency, energy conservation and technology up-gradation through studies and pilot projects in these SMEs clusters.

Major activities in the BEE -SME program are furnished below:

Activity 1: Energy use and technology audit

The energy use technology studies would provide information on technology status, best operating practices, gaps in skills and knowledge on energy conservation opportunities, energy saving potential and new energy efficient technologies, etc for each of the sub sector in SMEs.

Activity 2: Capacity building of stake holders in cluster on energy efficiency

In most of the cases SME entrepreneurs are dependent on the locally available technologies, service providers for various reasons. To address this issue BEE has also undertaken capacity building of local service providers and entrepreneurs/ Managers of SMEs on energy efficiency improvement in their units as well as clusters. The local service providers will be trained in order to be able to provide the local services in setting up of energy efficiency projects in the clusters

Activity 3: Implementation of energy efficiency measures

To implement the technology up-gradation project in the clusters, BEE has proposed to prepare the technology based detailed project reports (DPRs) for a minimum of five technologies in three capacities for each technology.

Activity 4: Facilitation of innovative financing mechanisms for implementation of energy efficiency projects

The objective of this activity is to facilitate the uptake of energy efficiency measures through innovative financing mechanisms without creating market distortion.
1 INTRODUCTION

1.1 Brief Introduction about Cluster

Andhra Pradesh historically called as rice bowl of India has 77% of cultivated land under paddy cultivation and produces around 17 million tons of rice. There are around 6000 rice millings units established in the state, out of which 408 registered rice mills are within Warangal district to process the produced paddy. Due to high concentration of many rice mills in Warangal district, the Warangal district rice milling units are considered for BEE –SME Program. The rice mill units in Warangal district are formed association namely The Warangal District Rice Milling Welfare Association and have around 408 rice millers are registered. Warangal is well known for rice milling industry and about 110 rice mills are in and around Warangal town.

These rice mills owners are procured the paddy from different sources and processed in these rice mills. The final product i.e. rice from these mills is supplied to Food Corporation of India (FCI), other marketing channels for selling. These units are in operation since 10-15 years and most of rice mills are family owned. Majority of the units generally operate for one shift a day but some run for two shifts both raw rice and parboiled rice mills. Rice processing is seasonal in nature and has two main seasons in a year depending on the paddy availability. First season is during April- May and paddy available during this season is fit for the production of boiled rice whereas the paddy available during the second season (November-January) is used mainly for raw rice production.

The major equipments employed in a typical rice mills are rubber shellers, polishers, dryers, whiteners, boilers, elevators, air compressors, motors, etc which are operated by power from the State Electricity Board (SEB). DG sets are operated when power off situation by the SEB. The major fuel used in the cluster is rice husk which is generated in the rice mills as a waste after process the paddy. The rice husk is used in boilers as a fuel for generating the steam which is required for different process in parboiled rice mills. Surplus rice husk from these rice mills is sold to outside buyers.

1.1.1 Existing production process & Technology

The product i.e. Rice is produced by processing the paddy in mill by removing the husk. There are two types of paddy processing technologies as discussed below:

Raw Rice Mills: Paddy procured from different sources is dried & then sent for milling without any other process.
Parboiled Rice Mills: The procured paddy from different sources is first sent to partial cooking with the help of steam and then dried with help of air dryers. The steaming of paddy is two types: ‘Once steamed paddy’, and ‘Twice steamed Paddy’. After steaming the paddy, it is sent to the driers for drying, then after it is sent for milling operations. The drying of paddy is of two types, Open Dryers and Closed Dryers. The dried paddy from dryer is then sent to the milling process which is similar to the raw rice processing.

Process description and flow: The paddy received from the farmers contains around 20 % moisture and also contains lot of foreign matter. In order to maintain a uniform moisture level of 12 %, the paddy is passed through a cleaner cum drier to reduce moisture and remove foreign particles. Grading and cleaning operation would involve removal of moisture and foreign material. The cleaned and dried paddy is stored for milling. The dried paddy is again passed through a secondary cleaning system to remove the foreign particles; stones etc are remained in preliminary cleaning. The cleaned paddy is de husked in huller mill with the help of rubber roll hullers. The husk thus separated is either sold or sent to the boiler section for use as fuel. The de-husked paddy is passed through table separators and then to polishing section. In the polishing section the thick brown layer of the paddy is removed with polishers/whiteners. The thick brown layer thus removed by the polishers/whitener is called bran and this will be used in the solvent extraction plant as raw material. The polished rice is then passed through sieves to remove broken. The broken rice obtained is put for sale in packed condition. The unbroken polished rice finally passes through sorters to remove discolored rice and then sent for packing.

- **Pre Cleaning**: Removing all impurities and unfilled grains from paddy
- **De-stoning**: Separating small stones from paddy
- **Parboiling (Optional)**: Helps in improving the nutritional quality by gelatinization of starch inside the rice grain. It improves the milling recovery percent during deshelling and polishing / whitening operation
- **De-Husking**: Removing husk from paddy
- **Husk Aspiration**: Separating the husk from brown rice/ unhusked paddy
- **Paddy Separation**: Separating the unhusked paddy from brown rice
- **Whitening**: Removing all or part of the bran layer and germ from brown rice
- **Polishing**: Improving the appearance of milled rice by removing the remaining bran particles and by polishing the exterior of the milled kernel
- **Length Grading**: Separating small and large broken from head rice
Blending: Mixing head rice with predetermined amount of broken, as required by the customer

Weighing and bagging: Preparing the milled rice for transport to the customer

The flow diagram of the various unit operations are in Annexure 2:

1.2 Energy performance in existing system

1.2.1 Fuel consumption

Average fuel and electricity consumption in a typical unit is given in Table 1 below:

Table 1 Average fuel and electricity consumption

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity (TPH)</th>
<th>No. of Units</th>
<th>Electrical Energy kWh / Yr</th>
<th>Production MT/Yr</th>
<th>Fuel Cons. MT/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-1 Raw Rice Mills</td>
<td>1</td>
<td>24</td>
<td>2225283</td>
<td>57600</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>49</td>
<td>5431820</td>
<td>235200</td>
<td>-</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td>73</td>
<td>7657104</td>
<td>292800</td>
<td>-</td>
</tr>
<tr>
<td>Type-2 Par-boiled Rice Mills</td>
<td>2</td>
<td>1</td>
<td>129454</td>
<td>4800</td>
<td>1272</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>2036309</td>
<td>72000</td>
<td>15600</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24</td>
<td>7824060</td>
<td>230400</td>
<td>44928</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>35</td>
<td>9989824</td>
<td>307200</td>
<td>61800</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>108</td>
<td>1764928</td>
<td>600000</td>
<td>61800</td>
</tr>
</tbody>
</table>

1.2.2 Average annual production:

The annual production of raw rice and parboiled rice for various capacities is briefed here. It is clearly depicted in the Table No 2 & Table No 3

Type-1: Raw Rice Milling: From the annual production in raw rice mill units for different capacities it is seen that for a 1 TPH capacity, the annual production is 57600 MT/Yr from 24 units, whereas for a 2 TPH capacity the annual production is 235200 MT/Yr form 49 units. Table 2 illustrates the annual production of raw rice mill based on capacity of production.

Table 2 Average annual productions in raw rice mills

<table>
<thead>
<tr>
<th>Capacity (TPH)</th>
<th>Processing Methodologies</th>
<th>Number of Units</th>
<th>Annual Production (MT/Yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raw Rice Mill</td>
<td>24</td>
<td>57600</td>
</tr>
<tr>
<td>2</td>
<td>Raw Rice Mill</td>
<td>49</td>
<td>235200</td>
</tr>
</tbody>
</table>

Type-2: Parboiled Rice Milling: From the annual production in parboiled rice mill units for different capacities, it is seen that for a 2 TPH capacity the annual production is 4800 MT/Yr from 1 unit, whereas for a 3 TPH capacity the annual production is 72000 MT/Yr.
from 10 units and 4 TPH is 230400 MT/Yr from 24 units. Table 3 illustrates the annual production details of parboiled rice mills based on capacity of production.

Table 3 Average annual production in Parboiled rice mills

<table>
<thead>
<tr>
<th>Capacity TPH</th>
<th>Processing Methodologies</th>
<th>No of Units</th>
<th>Annual Production (MT/Yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Parboiled Rice Mill</td>
<td>1</td>
<td>4800</td>
</tr>
<tr>
<td>3</td>
<td>Parboiled Rice Mill</td>
<td>10</td>
<td>72000</td>
</tr>
<tr>
<td>4</td>
<td>Parboiled Rice Mill</td>
<td>24</td>
<td>230400</td>
</tr>
</tbody>
</table>

The annual production from these rice mills is dependent on the availability of the paddy. The paddy is available during two seasons in a year i.e. First season is during April- May and paddy available during this season is fit for the production of boiled rice whereas the paddy available during the second season (November-January) is used mainly for raw rice production.

1.2.3 Specific energy consumption

Specific energy consumption both electrical and thermal energy per m² or MT of production for different type of Rice mills are furnished in Table 4 below:

Table 4 Specific energy consumption

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity (TPH)</th>
<th>No. of Units</th>
<th>Production MT/Yr</th>
<th>Sp. Power Cons. kWh/T</th>
<th>Sp. Fuel Cons. kg/T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-1 Raw Rice Mills</td>
<td>1</td>
<td>24</td>
<td>57600</td>
<td>38.63</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>49</td>
<td>235200</td>
<td>23.09</td>
<td>-</td>
</tr>
<tr>
<td>Sub-Total</td>
<td></td>
<td>73</td>
<td>292800</td>
<td>26.15</td>
<td>-</td>
</tr>
<tr>
<td>Type-2 Par-boiled Rice Mills</td>
<td>2</td>
<td>1</td>
<td>4800</td>
<td>26.96</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>72000</td>
<td>28.28</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24</td>
<td>230400</td>
<td>33.95</td>
<td>195</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td>35</td>
<td>307200</td>
<td>32.51</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>108</td>
<td>600000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.3 Existing Technology / Equipment

1.3.1 Description of existing technology

In parboiled rice mills, electricity cost is about 25 to 30% of total cost and the rice husk consumption cost in boiler is about 70 to 75% of total energy consumption cost in a unit. Hence, about 60 to 70% of total energy cost in parboiled rice mills plant is in the boiler only. The boiler is the steam-generating equipment. Husk is burned in the furnace and the heat of combustion is transferred to evaporate water inside the boiler. This steam is used to soaking, cooking and drying the paddy.
In Warangal cluster the boilers are using Pneumatic over Feed (POF / POS) – The fuel is pneumatically lifted and fed from the top and is burnt over specially designed fire bars. Solid fuels like Rice husk can also be burnt using an ID fan additionally.

Table 5 Boiler specifications:

<table>
<thead>
<tr>
<th>Components</th>
<th>Different Parts</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td></td>
<td>5000 kg/hr</td>
</tr>
<tr>
<td>Type</td>
<td>Shell & Tube</td>
<td>IS 2062</td>
</tr>
<tr>
<td></td>
<td>Fully Wet Back</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Three Pass</td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
<td>Rice Husk</td>
</tr>
<tr>
<td>Bed</td>
<td>Grate Bars</td>
<td>Alloy CI</td>
</tr>
<tr>
<td>Feeder</td>
<td>Vibratory or Screw</td>
<td>Constant speed motor</td>
</tr>
<tr>
<td>Firing system</td>
<td>Front door/ Top</td>
<td>SA 106 Gr.B</td>
</tr>
<tr>
<td>Furnace</td>
<td>Internal</td>
<td>IS 8 (50% Alumina)</td>
</tr>
<tr>
<td>Working Pressure</td>
<td></td>
<td>10.54 kg/cm²</td>
</tr>
<tr>
<td>Material of Construction</td>
<td>Tubes</td>
<td>BS 6323 ERW</td>
</tr>
<tr>
<td></td>
<td>Shell</td>
<td>SA 106 Gr.B</td>
</tr>
<tr>
<td></td>
<td>Chimney</td>
<td>M.S</td>
</tr>
<tr>
<td>Fabrication</td>
<td></td>
<td>Shop as well as Site Fabrication</td>
</tr>
</tbody>
</table>
Demand and Energy charges

At Warangal, electrical connection is taken from Andhra Pradesh Northern Power Distribution Company Limited at the following tariff rates:

<table>
<thead>
<tr>
<th>S. N</th>
<th>Type of Connection</th>
<th>Category</th>
<th>Type of Consumers</th>
<th>Fixed/ Demand Charges</th>
<th>Energy Charges Ps/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HT</td>
<td>Category -1</td>
<td>Industrial General (Hotels, Hospitals, Restaurants, Clubs, Theaters, Cinemas Railway Stations)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>132 kV and above</td>
<td>250/KVA/ Month</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33 kV</td>
<td>250/KVA/ Month</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 kV and below</td>
<td>250/KVA/ Month</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fans & Lighting Colony Consumption</td>
<td></td>
<td>440</td>
</tr>
</tbody>
</table>

If in any month the Recorded Maximum Demand (RMD) of the consumer exceeds his contracted demand with Licensee, the consumer will pay the following charges on excess demand and energy.

<table>
<thead>
<tr>
<th>Excess RMD over CMD</th>
<th>Demand Charges on Excess Demand</th>
<th>Energy Charges on Excess Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 to 120%</td>
<td>2 times of normal charge</td>
<td>Normal</td>
</tr>
<tr>
<td>Above 120% and up to 200%</td>
<td>2 times of normal charge</td>
<td>1.5 times of normal charge</td>
</tr>
<tr>
<td>More than 200%</td>
<td>2 times of normal charge</td>
<td>2 times of normal charge</td>
</tr>
</tbody>
</table>

Excess demand and energy shall be computed as follows:

- Excess Demand = (RMD – CMD) if RMD is more than CMD with Licensee
- Excess Energy = (Excess Demand/RMD) X Recorded Energy.

1.3.2 Role in Process

Every parboiled rice mills requires a steam for the process of paddy before milling operation. But the steam generation by the boiler not utilized efficiently and produces the loss. The rice husk cogeneration system is effective utilization of steam both in process and also generation of power at same time. By implementation and installation of cogeneration in parboiled rice mills, the steam generation by the boiler is used to generate the power and also used for process the paddy. All parboiled rice mill in Warangal cluster requires steam at 3.5 kg/cm² pressure and 110°C to process the paddy. By the cogeneration system the generated steam from boiler is used initially for generating the power and thereby utilizing the low pressure steam for process the paddy. This power can be used for internal consumption of the parboiled rice mills for their operation where grid power consumption reduces and remaining for sale to others.
1.4 Baseline establishment for existing technology

1.4.1 Design and operating parameters

Rice husk Consumption in boiler depends on the following parameters:

- Steam temperature
- Combustion air flow
- Moisture in rice husk
- Calorific value of fuel
- Consumption in boiler depends on the following parameters.
- Percentage combustible in ash
- Flue gas temperature in °C (T_f)
- Total power generated per day
- Ultimate analysis of fuel (H_2, O_2, S, C, moisture content, ash content)
- Percentage of oxygen or CO_2 in the flue gas
- Ambient temperature in °C (T_a) & humidity of air in kg/kg of dry air.

Electricity requirement in the parboiled rice mill depends on production. Detail of rice husk consumption in parboiled rice mills is given in Table 6 below.

Table 6 Electricity, Rice husk and diesel consumption

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Energy Type</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>1</td>
<td>Electricity</td>
<td>kWh/year</td>
<td>307938</td>
</tr>
<tr>
<td>2</td>
<td>Rice Husk</td>
<td>MT/year</td>
<td>1950</td>
</tr>
<tr>
<td>3</td>
<td>Diesel</td>
<td>Liters/year</td>
<td>800</td>
</tr>
</tbody>
</table>

Base Line

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Capacity</td>
<td>TPH</td>
</tr>
<tr>
<td>Enthalpy of feed water @ 60 C and normal pressure</td>
<td>kcal/kg</td>
</tr>
<tr>
<td>Enthalpy of steam @ 110 C temp 10.5 bar pressure</td>
<td>kcal/kg</td>
</tr>
<tr>
<td>Heat required</td>
<td>kcal/hr</td>
</tr>
<tr>
<td>Efficiency of existing boiler with older firing technique</td>
<td>%</td>
</tr>
<tr>
<td>Heat Input</td>
<td>kcal/hr</td>
</tr>
<tr>
<td>Rice Husk required (calorific value 3200 kcal/Kg)</td>
<td>Kg/hr</td>
</tr>
<tr>
<td>Rice Husk required Annually (@ 24hrs/day and 350 days/annum)</td>
<td>tonne/Annum</td>
</tr>
</tbody>
</table>

1.4.2 Operating efficiency analysis

Operating efficiency of the boiler is found to be range of 45% to 72%. The operating efficiency of boiler is determined by indirect method. It includes the principal losses that
occur in the boiler. Detailed parameters and calculations used for operating efficiency evaluation of boiler efficiency are given in the Annexure 1.

1.5 Barriers in adoption of proposed equipment

1.5.1 Technological barrier

In rice milling cluster at Warangal, overall technical understanding on rice manufacturing is good and is rapidly increasing. Some unit’s prime equipments like rubber Sheller, whitener, polisher etc are imported from Japan and China.

There is no separate electrician in each unit. In case, any problem occurs in the milling section and boiler section, the plant should be shut down for one day. However, the first change is still a challenge, upon success, later on duplication and adaptation is extremely common in the cluster. The technologies need to be demonstrated within the cluster. While carrying out the audits and presenting the energy audit reports to the units, in the discussion with the plant owners, many of them agreed with many of the identified energy saving measures and technologies but they demanded demonstration of the energy saving technologies in any plant and thereafter they have readiness to follow.

1.5.2 Financial barrier

Availing finance is not a major issue. Among the SME’s, the larger units, if convinced, are capable of either financing themselves or get the finance from their banks. The smaller units will require loan at comfortable rates and other support to raise the loan. However, as most of them have been able to expand their setup and grow, there is a readiness to spend for energy efficiency technologies which have good returns. Energy Efficiency Financing Schemes such as that of SIDBI’s, if focused on the cluster, will play a catalytic role in implementation of identified energy conservation projects & technologies.

The cluster has significant potential of co-generation by using biomass (rice husk) and solar technologies. However, though there are good returns, this project is highly capital intensive and requires support of policy as well as innovative financial mechanisms. Initiative has already been taken by some of the units to install rice husk based co-generation. Clean Development Mechanism (CDM) needs to be duly applied to generate additional cash flow to further improve the returns from the project.

1.5.3 Skilled manpower

At Warangal rice mill cluster, availability of skilled manpower is one of the limitations. Number of rice mill units has grown fast as compared to the availability of skilled
manpower. Two to three local electrical persons available at Warangal takes care of about 15 to 20 Rice mill units. For major equipments like polisher, whitener, capacitors banks status checking, boiler section and remaining motors in the unit etc. Maintenance or the repair work of these equipments is take care by the equipment suppliers themselves. Local technical persons at Warangal take care of most of the matters. The units have age-old inefficient practices and well-experienced non-qualified staff in these industries. Even if the qualified staff joins for the sake of experience it jumps to other big industry after getting sufficient experience this is because of low pay packages. These are the major barriers in the technological development of the SME’s. Specialized and focused training of the local service providers on better operation and maintenance of the equipments, importance of the energy and its use and energy conservation measures will improve awareness among the unit owners and workforce. Original equipment suppliers should also participate in these programs.

1.5.4 Any other barrier

Many of the new technology provider’s (especially some foreign technology leaders) have not shown keen interest in implementation of their new innovative technologies. This appears to be because of fear of duplication. The service providers for the Warangal cluster are available in the radius of 150 to 200 kms and are mainly from important cities such as Vijayawada and Hyderabad. Warangal is well connected by intercity train service and highways to both the cities. Few of the service providers have their activities in Warangal. More than fifty service providers of technologies for energy efficiency improvements are located in these cities.
2. PROPOSED EQUIPMENT FOR ENERGY EFFICIENCY IMPROVEMENT

2.1 Description of proposed equipment

2.1.1 Detailed of proposed equipment

Cogeneration or Combined Heat and Power (CHP) is defined as the sequential generation of two different forms of useful energy - typically mechanical energy and thermal energy - from a single primary energy source. Mechanical energy may be used to drive an alternator for producing electricity. Thermal energy can be used either for direct process applications or for indirectly producing steam, hot water, hot air for dryer.

Cogeneration provides a wide range of technologies for application in various domains of economic activities. The overall efficiency of energy use in cogeneration mode can be up to 85 per cent - and even above in some cases. Along with the saving of fossil fuels, Cogeneration also helps reducing the emissions of greenhouse gases (particularly CO2 emission).

Table 8 Detail design of Co-generation system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Pressure at Turbine Inlet</td>
<td>Kg/cm² (g)</td>
<td>44.0</td>
</tr>
<tr>
<td>Steam Temperature at Turbine Inlet</td>
<td>°C</td>
<td>440.0</td>
</tr>
<tr>
<td>Steam Flow at Turbine Inlet</td>
<td>TPH</td>
<td>12.5</td>
</tr>
<tr>
<td>Steam Pressure at Turbine Outlet</td>
<td>Kg/cm² (g)</td>
<td>3.5</td>
</tr>
<tr>
<td>Steam Temperature at Turbine Outlet</td>
<td>°C</td>
<td>195.0</td>
</tr>
<tr>
<td>Power Output at the Generator Terminals</td>
<td>kW</td>
<td>1000±3%</td>
</tr>
</tbody>
</table>

For implementation of the proposed technology as per the following modifications are required in existing system.

1. Fluidized bed combustion boiler
2. Extraction cum condensing turbine

2.1.2 Equipment/technology specifications

Detailed specifications of energy efficiency boiler are furnished in Annexure 7.

2.1.3 Suitability or Integration with existing equipment

After analysis of the various system configurations it was concluded that an extraction cum condensing turbine type of system would be the best option for implementation. The steam to this turbine would be supplied from a new Fluidized bed combustion boiler in place of the existing boiler. In this scheme, steam is generated in a high-pressure boiler at a high pressure & is expanded through an extraction cum condensing turbine. A part of steam (60%- 65%) is extracted to meet the power requirements and the rest is used in
the process. The advantage with this scheme is that the entire process steam & power requirement of the unit would be met through the project.

2.1.4 Superiority over existing system

The increased efficiency of the boiler and electricity produced by the system are far ahead advantages of the system to the existing boilers.

2.1.5 Availability of technology/equipment

Suppliers of this technology are available at local as well international level very easy. Even most of the suppliers took initiative and interacting with the parboiled rice mill owners for creating the awareness of use of this technology at parboiled rice mills.

2.1.6 Source of equipment

This technology is already implemented and operation in most of the parboiled rice mills in India. Though it is not a very popular technique in parboiled rice mill industry in Warangal cluster, but it is one of the most fuel efficient technologies available.

2.1.7 Service providers

Details of technology service providers are shown in Annexure 6

2.1.8 Terms and Conditions in sales of equipment

Scope of supply, terms and conditions differ from equipment suppliers. Further details of terms and condition are also shown in Annexure 7

2.1.9 Process down time

Process down time of the Cogeneration is about 12 weeks after delivery of entire material.

2.2 Life cycle assessment and risks analysis

Life of the equipment is about 10-15 years. No need to any further huge modification after one time technology changes, in case of risk analysis there is a need of proper training of boiler operator for Cogeneration system.

2.3 Suitable unit/Plant for implementation of proposed technology

Suitable unit for implementation of the proposed technology are parboiled rice mills having the production capacity of above 5tonnes/hr.
3. ECONOMIC BENEFITS FROM PROPOSED TECHNOLOGY

3.1 Technical benefit

3.1.1 Fuel savings

Rice husk consumption of new energy efficient boiler would be about 26570 tonne of rice husk as compared to of energy deficient boilers of about 14142 tonnes per year. Rice husk consumption in the parboiled rice mills will increase about more than 1.5 times existing consumption after implementation of the technology. Project implementation will lead to generate the power about 8400 MW per year.

3.1.2 Improvement in product quality

The Cogeneration system utilizes the fuel to its max and the fire travels in such a manner that it heats up the feed water at equal temperature. A resultant of which is high quality of steam being produced as compared to the other firing but no direct impact on the product.

3.1.3 Improvement in production

In Cogeneration mode of operation, the production will be same as in present. But after implementation of the proposed system increase the steam quantity of the boiler and additional benefit of electricity produced.

3.1.4 Reduction in raw material

Raw material consumption is same even after the implementation of proposed technology.

3.1.5 Reduction in other losses

Use of energy efficient boilers will reduce specific energy consumption of the rice milling unit. And will reduce dependency of mill units on APNPDCl for electric supply.

3.2 Monetary benefits

Rice husk consumption of new energy efficient boiler would be about 26570 tonne of rice husk as compared to of energy deficient boilers of about 114142 tonnes per year. Savings are due to the difference in electricity generation of 8400 MW per year cost and the price of electricity available from APNPDCl of about ` 1.10 per unit. Hence total monetary benefit due to implementation of this project will be about `92.40 Lakhs.
3.3 Social benefits

3.3.1 Improvement in working environment

The Cogeneration system is cleaner form energy which will certainly raise working environment workforce.

3.3.2 Improvement in skill set of workers

The Proposed system will require skilled Workers, so it is a need to raise skill level of the workers.

3.4 Environmental benefits

3.4.1 Reduction in effluent generation

Additional fuel burnt will result in additional effluent as generated.

3.4.2 Reduction in GHG emission such as CO2, NOx, etc

The Project would be able to reduce about 1676.55 tonnes of CO₂ produced per year on the production of electricity.

3.4.3 Reduction in other emissions like Sox

As the fuel used in the system is renewable this factor is not considered.
4. IMPLEMENTATION OF NEW EFFICIENT TECHNOLOGY

4.1 Cost of technology implementation

4.1.1 Cost of technology

The costs required to implement Cogeneration system of capacity 1000 kW per hour is listed in the table below.

Table 9 Cost of equipment

<table>
<thead>
<tr>
<th>S. No</th>
<th>Particular</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cost of Boiler</td>
<td>` (in lakh)</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>Cost of system</td>
<td>` (in lakh)</td>
<td>122.1</td>
</tr>
<tr>
<td>3</td>
<td>Erection & Commissioning cost</td>
<td>` (in lakh)</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Interest during implementation</td>
<td>` (in lakh)</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Cost of civil work</td>
<td>` (in lakh)</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Custom Clearance and Transportation Charges</td>
<td>` (in lakh)</td>
<td>10.36</td>
</tr>
<tr>
<td>6</td>
<td>Import duty</td>
<td>` (in lakh)</td>
<td>21.33</td>
</tr>
<tr>
<td>5</td>
<td>Other misc. cost</td>
<td>` (in lakh)</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Total cost</td>
<td>` (in lakh)</td>
<td>299.79</td>
</tr>
</tbody>
</table>

4.2 Arrangement of funds

4.2.1 Entrepreneur's contribution

Proposed financing of Condensate Recovery System is made considering a debt equity ratio of 3:1, which is normally allowed by financial institutions for financing energy efficiency projects. On the basis of debt equity ratio of 3:1 the promoter's contribution works out to 25% of the project cost and the balance would be term loan from the Bank / FIs.

4.3 Financial indicators

4.3.1 Cash flow analysis

Profitability and cash flow statements have been worked out for a period of 10 years. The financials have been worked out on the basis of certain reasonable assumptions, which are outlined below. The project is expected to achieve monetary savings of `92.40 lakh per year.

- The Operation and Maintenance cost is estimated at 4% of cost of total project with 5% increase in every year as escalations.
- Interest on term loan is estimated at 10%.
- Depreciation is provided as per the rates provided in the companies act.
Considering the above mentioned assumptions, the net cash accruals starting with `31.04 lakh in the first year operation and gradually increases to ` 257.20 lakh at the end of tenth year.

4.3.2 Simple payback period

The total project cost of the proposed technology is ` 314.06 lakh and monetary saving is ` 92.40 lakh hence, the simple payback period works out to be 3.40 years.

4.3.3 Net Present Value (NPV)

The Net present value of the investment at 10% works out to be ` 66.06 lakh.

4.3.4 Internal rate of return (IRR)

The after tax IRR of the project works out to be 15.00%. Thus the project is financially viable.

4.3.5 Return on investment (ROI)

The average return on investment of the project activity works out at 19.68%.

Financial indicator of proposed technology is furnished in Table 11 below:

Table 11 Financial indication of proposed technology/equipment

<table>
<thead>
<tr>
<th>S. No</th>
<th>Particulars</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simple Pay Back period</td>
<td>Month</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>IRR</td>
<td>% age</td>
<td>15.00</td>
</tr>
<tr>
<td>3</td>
<td>NPV</td>
<td>lakhs</td>
<td>66.06</td>
</tr>
<tr>
<td>4</td>
<td>ROI</td>
<td>% age</td>
<td>19.68</td>
</tr>
<tr>
<td>5</td>
<td>DSCR</td>
<td>Ratio</td>
<td>1.44</td>
</tr>
</tbody>
</table>

4.4 Sensitivity analysis

A sensitivity analysis has been carried out to ascertain how the project financials would behave in different situations like when there is an increase in fuel savings or decrease in fuel savings. For the purpose of sensitive analysis, two following scenarios have been considered.

- Optimistic scenario (Increase in fuel savings by 10%)
- Pessimistic scenario (Decrease in fuel savings by 10%)

In each scenario, other inputs are assumed as a constant. The financial indicators in each of the above situation are indicated along with standard indicators.

Details of sensitivity analysis at different scenarios are shown in Table 12 below:
Table 12 Sensitivity analysis at different scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>IRR</th>
<th>NPV</th>
<th>ROI</th>
<th>DSCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>` in lakh</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>15.00</td>
<td>66.06</td>
<td>19.68</td>
<td>1.44</td>
</tr>
<tr>
<td>10% increase in fuel Saving</td>
<td>17.66</td>
<td>103.54</td>
<td>20.61</td>
<td>1.58</td>
</tr>
<tr>
<td>10% decrease in fuel Saving</td>
<td>12.22</td>
<td>28.58</td>
<td>18.45</td>
<td>1.30</td>
</tr>
</tbody>
</table>

4.5 Procurement and implementation schedule

Procurement will take about 6 weeks and implementation schedule for proposed project is shown in Table 13.

Table 13 Procurement and implementation Schedule

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Activities</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>1</td>
<td>Foundation & civil work</td>
<td>□ □ □</td>
</tr>
<tr>
<td>2</td>
<td>Erection & commissioning of the turbine set</td>
<td>□ □ □ □ □ □ □ □</td>
</tr>
<tr>
<td>3</td>
<td>Cabling & electrical panel fitting</td>
<td>□ □ □ □</td>
</tr>
<tr>
<td>4</td>
<td>Testing and trial</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>On site operator training</td>
<td>□ □ □</td>
</tr>
</tbody>
</table>

□ Indicates the week the activity is scheduled to be completed.
Annexure – 1: Energy audit reports used for establishing

The results of 5, 4TPH boiler detail energy audit with efficiency is given below

Audit No. 1: Energy audit

<table>
<thead>
<tr>
<th>S. No</th>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boiler Capacity</td>
<td>TPH</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Mass Flow rate of steam (ms)</td>
<td>kg/h</td>
<td>5000</td>
</tr>
<tr>
<td>3</td>
<td>Feed water temperature (T1)</td>
<td>°C</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Enthalpy of feed water(h2)</td>
<td>kcal/kg</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>Process steam pressure (P)</td>
<td>kg/cm²</td>
<td>10.5</td>
</tr>
<tr>
<td>6</td>
<td>Inlet steam temperature (T2)</td>
<td>°C</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>Steam Enthalpy at steam turbine inlet(h1)</td>
<td>kcal/kg</td>
<td>643.9</td>
</tr>
<tr>
<td>8</td>
<td>Mass Flow rate of fuel (mf)</td>
<td>kg/h</td>
<td>1690</td>
</tr>
<tr>
<td>9</td>
<td>% Hydrogen in fuel</td>
<td>%</td>
<td>5.70</td>
</tr>
<tr>
<td>10</td>
<td>% Carbon in fuel</td>
<td>%</td>
<td>38.5</td>
</tr>
<tr>
<td>11</td>
<td>% Oxygen</td>
<td>%</td>
<td>38.5</td>
</tr>
<tr>
<td>12</td>
<td>% Nitrogen</td>
<td>%</td>
<td>0.5</td>
</tr>
<tr>
<td>13</td>
<td>% Sulphur</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>G.C.V</td>
<td>Kcal/kg°C</td>
<td>3600</td>
</tr>
<tr>
<td>15</td>
<td>Moisture in fuel</td>
<td>%</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>Ash in fuel</td>
<td>%</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>G.C.V of Bottom Ash</td>
<td>Kcal/kg°C</td>
<td>900</td>
</tr>
<tr>
<td>18</td>
<td>G.C.V of Fly Ash</td>
<td>Kcal/kg°C</td>
<td>650</td>
</tr>
<tr>
<td>19</td>
<td>Ratio of bottom Ash to Fly Ash</td>
<td>%</td>
<td>80:20</td>
</tr>
<tr>
<td>20</td>
<td>Percentage of oxygen in flue gas</td>
<td>%</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>Flue gas temperature</td>
<td>°C</td>
<td>200</td>
</tr>
<tr>
<td>22</td>
<td>Ambient Temperature</td>
<td>°C</td>
<td>30</td>
</tr>
<tr>
<td>23</td>
<td>Humidity of air</td>
<td>kg/kg of dry air</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Efficiency of Boiler

Based on the measured data the boiler efficiency is calculated and presented below.

<table>
<thead>
<tr>
<th>S.NO</th>
<th>HEAT LOSS DESCRIPTION</th>
<th>GCV Based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>kCal/kg</td>
</tr>
<tr>
<td>1</td>
<td>Loss due to heat in dry flue gases</td>
<td>1086</td>
</tr>
<tr>
<td>2</td>
<td>Loss due to physically bound moisture in fuel</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>Loss due to chemically bound moisture from burning of hydrogen</td>
<td>336</td>
</tr>
<tr>
<td>4</td>
<td>Loss due to un-burned carbon in ash</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>Loss due to formation of co</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>Loss due to radiation & convection (Unmeasured)</td>
<td>108</td>
</tr>
<tr>
<td>S.NO</td>
<td>HEAT LOSS DESCRIPTION</td>
<td>GCV Based</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kCal/kg</td>
</tr>
<tr>
<td></td>
<td>Total Heat Loss</td>
<td>1647</td>
</tr>
<tr>
<td></td>
<td>Efficiency</td>
<td>54</td>
</tr>
</tbody>
</table>
FLOW CHART FOR RAW RICE / PARBOILED RICE MANUFACTURE

- Paddy
 - Cleaning
 - Drying
 - For Raw Rice
 - Sun Drying
 - Mechanical Drying
 - For Raw / Parboiled Rice
 - Shelling Unit
 - Cleaning
 - Dehusking
 - Husk Separator
 - Husk
 - Paddy Separator
 - Unshelled Paddy
 - Brown Rice
 - Polishing Unit
 - Bran Separator
 - Bran
 - Rice Grader
 - Whole Rice
 - Weighment & Packing
 - Broken Rice & Impurities
 - Weighment & Packing
Annexure – 3: Detailed technology assessment report

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Existing System</th>
<th>Proposed CO GEN System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Steam Requirement</td>
<td>kg/h</td>
<td>5000</td>
<td>12500</td>
</tr>
<tr>
<td>Process Steam Pressure (P2) / Back Pressure</td>
<td>kg/cm²</td>
<td>10.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Steam Pressure (P1)</td>
<td>kg/cm²</td>
<td>10.5</td>
<td>32</td>
</tr>
<tr>
<td>Steam temperature (T2) °C</td>
<td>°C</td>
<td>110</td>
<td>350</td>
</tr>
<tr>
<td>Steam Enthalpy at steam turbine inlet (h1) / Process</td>
<td>kcal/kg</td>
<td>644</td>
<td>744</td>
</tr>
<tr>
<td>Steam Enthalpy at extraction turbine (h2), Dry -210 °C</td>
<td>kcal/kg</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>Feed water temperature (T)</td>
<td>°C</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Enthalpy of feed water (h)</td>
<td>kcal/kg</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Fuel Consumption with Rice Husk 3600 Kcal/kg</td>
<td>kg/h</td>
<td>1690</td>
<td>3163</td>
</tr>
<tr>
<td>Boiler efficiency (ηb)</td>
<td>%</td>
<td>54</td>
<td>82</td>
</tr>
<tr>
<td>Average Power generated (P)</td>
<td>kW</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Extra Fuel Consumption for Power Generation</td>
<td>kg/h</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>Cost of Fuel per Kg</td>
<td>`/kg</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Additional Fuel Cost per Day</td>
<td>`/day</td>
<td>63634</td>
<td></td>
</tr>
<tr>
<td>Power Produced per day</td>
<td>kWh/day</td>
<td>24000</td>
<td></td>
</tr>
<tr>
<td>No of days operation (assumption)</td>
<td>Days</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Working hours per days</td>
<td>hours</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Unit power generation Cost</td>
<td>`/kWh</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td>Cost of APNPDCL power</td>
<td>`/kWh</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>Savings in Power per unit</td>
<td>`/kWh</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>Power generation per annum</td>
<td>kWh/Annnum</td>
<td>8400.00</td>
<td></td>
</tr>
<tr>
<td>Net Saving Potential per annum</td>
<td>` in lakh</td>
<td>92.40</td>
<td></td>
</tr>
<tr>
<td>Initial Investment</td>
<td>` in lakh</td>
<td>314.06</td>
<td></td>
</tr>
<tr>
<td>Simple Payback period</td>
<td>years</td>
<td>3.40</td>
<td></td>
</tr>
</tbody>
</table>
Annexure – 4: Detailed financial analysis

<table>
<thead>
<tr>
<th>Name of the Technology</th>
<th>Cogeneration System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Capacity</td>
<td>1000 kW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
<th>Unit</th>
<th>Values</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed Capacity</td>
<td>kW</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>No of working days</td>
<td>Days</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>No of Operating hours per day</td>
<td>Hrs./day</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Investment

Cost of System (Boiler+System)	` in lakhs	207.10
Erection & Commissioning		10.00
Civil work		35.00
Taxes	` in lakhs	42.00
Misc .cost(including supervision)	` in lakhs	5.00
Investment without EPC	` in lakhs	299.10
EPC cost	` in lakhs	14.96
Total Investment	` in lakhs	314.06

Financing pattern

Own Funds (Internal Accruals)	` in lakhs	78.51
Loan Funds (Term Loan)	` in lakhs	235.54
Loan Tenure	Years	5
Moratorium Period	Months	6
Repayment Period	Months	66
Interest Rate	%	10.00%
		SIDBI EE Lending rate

Estimation of Costs

| O & M Costs | % on Plant & Equip | 4.00% |
| Annual Escalation | % | 5.00% |

Estimation of Revenue

Power generation	kW/Annum	8400000
Saving per unit	`/kWh	1.10
St. line Depn.	%	5.28%
IT Depreciation	%	7.84%
Income Tax	%	33.99%

Estimation of Interest on Term Loan

<table>
<thead>
<tr>
<th>Years</th>
<th>Opening Balance</th>
<th>Repayment</th>
<th>Closing Balance</th>
<th>Interest (`in lakh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>235.54</td>
<td>12.00</td>
<td>223.54</td>
<td>27.31</td>
</tr>
<tr>
<td>2</td>
<td>223.54</td>
<td>24.00</td>
<td>199.54</td>
<td>21.26</td>
</tr>
<tr>
<td>3</td>
<td>199.54</td>
<td>27.00</td>
<td>172.54</td>
<td>18.72</td>
</tr>
<tr>
<td>4</td>
<td>172.54</td>
<td>32.00</td>
<td>140.54</td>
<td>15.83</td>
</tr>
<tr>
<td>5</td>
<td>140.54</td>
<td>35.00</td>
<td>105.54</td>
<td>12.56</td>
</tr>
<tr>
<td>6</td>
<td>105.54</td>
<td>40.00</td>
<td>65.54</td>
<td>8.77</td>
</tr>
<tr>
<td>7</td>
<td>65.54</td>
<td>42.50</td>
<td>23.04</td>
<td>4.64</td>
</tr>
<tr>
<td>8</td>
<td>23.04</td>
<td>23.04</td>
<td>0.00</td>
<td>0.68</td>
</tr>
</tbody>
</table>

| Total | 235.54 | | | |
Project Profitability ('in lakh)

<table>
<thead>
<tr>
<th>Particulars / Years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Revenue (A)</td>
<td>92.40</td>
</tr>
<tr>
<td>Total Expenses (B)</td>
<td>12.56</td>
<td>13.19</td>
<td>13.85</td>
<td>14.54</td>
<td>15.27</td>
<td>16.03</td>
<td>16.83</td>
<td>17.68</td>
<td>18.56</td>
<td>19.49</td>
</tr>
<tr>
<td>PBDT (A)-(B)</td>
<td>79.84</td>
<td>79.21</td>
<td>78.55</td>
<td>77.86</td>
<td>77.13</td>
<td>76.37</td>
<td>75.57</td>
<td>74.72</td>
<td>73.84</td>
<td>72.91</td>
</tr>
<tr>
<td>Interest</td>
<td>27.31</td>
<td>21.26</td>
<td>18.72</td>
<td>15.83</td>
<td>12.56</td>
<td>8.77</td>
<td>4.64</td>
<td>0.68</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PBDT</td>
<td>52.53</td>
<td>57.95</td>
<td>59.83</td>
<td>62.03</td>
<td>64.57</td>
<td>67.60</td>
<td>70.93</td>
<td>74.04</td>
<td>73.84</td>
<td>72.91</td>
</tr>
<tr>
<td>PBT</td>
<td>35.95</td>
<td>41.37</td>
<td>43.24</td>
<td>45.45</td>
<td>47.99</td>
<td>51.02</td>
<td>54.34</td>
<td>57.46</td>
<td>57.26</td>
<td>56.33</td>
</tr>
<tr>
<td>Income tax</td>
<td>9.49</td>
<td>11.98</td>
<td>13.23</td>
<td>14.53</td>
<td>15.91</td>
<td>17.41</td>
<td>18.98</td>
<td>20.44</td>
<td>20.74</td>
<td>20.77</td>
</tr>
<tr>
<td>Profit after tax (PAT)</td>
<td>26.46</td>
<td>29.38</td>
<td>30.02</td>
<td>30.91</td>
<td>32.08</td>
<td>33.61</td>
<td>35.36</td>
<td>37.02</td>
<td>36.51</td>
<td>35.56</td>
</tr>
</tbody>
</table>

Computation of Tax ('in lakh)

<table>
<thead>
<tr>
<th>Particulars / Years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit before tax</td>
<td>35.95</td>
<td>41.37</td>
<td>43.24</td>
<td>45.45</td>
<td>47.99</td>
<td>51.02</td>
<td>54.34</td>
<td>57.46</td>
<td>57.26</td>
<td>56.33</td>
</tr>
<tr>
<td>Taxable profit</td>
<td>27.91</td>
<td>35.26</td>
<td>38.91</td>
<td>42.75</td>
<td>46.81</td>
<td>51.23</td>
<td>55.84</td>
<td>60.14</td>
<td>61.03</td>
<td>61.10</td>
</tr>
<tr>
<td>Income Tax</td>
<td>9.49</td>
<td>11.98</td>
<td>13.23</td>
<td>14.53</td>
<td>15.91</td>
<td>17.41</td>
<td>18.98</td>
<td>20.44</td>
<td>20.74</td>
<td>20.77</td>
</tr>
</tbody>
</table>

Project Balance Sheet ('in lakh)

<table>
<thead>
<tr>
<th>Particulars / Years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liabilities</td>
<td></td>
</tr>
<tr>
<td>Share capital (D)</td>
<td>78.51</td>
</tr>
<tr>
<td>Reserves & Surplus (E)</td>
<td>26.46</td>
<td>55.85</td>
<td>85.86</td>
<td>116.78</td>
<td>148.86</td>
<td>182.46</td>
<td>217.83</td>
<td>254.85</td>
<td>291.36</td>
<td>326.92</td>
</tr>
<tr>
<td>Term loans (F)</td>
<td>223.54</td>
<td>199.54</td>
<td>172.54</td>
<td>140.54</td>
<td>105.54</td>
<td>65.54</td>
<td>23.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total liabilities D+E+F</td>
<td>328.52</td>
<td>333.90</td>
<td>336.92</td>
<td>335.83</td>
<td>332.91</td>
<td>326.52</td>
<td>319.38</td>
<td>333.36</td>
<td>369.88</td>
<td>405.44</td>
</tr>
<tr>
<td>Assets</td>
<td></td>
</tr>
<tr>
<td>Gross fixed assets</td>
<td>314.06</td>
</tr>
<tr>
<td>Less: Accm. Depreciation</td>
<td>16.58</td>
<td>33.16</td>
<td>49.75</td>
<td>66.33</td>
<td>82.91</td>
<td>99.49</td>
<td>116.07</td>
<td>132.66</td>
<td>149.24</td>
<td>165.82</td>
</tr>
<tr>
<td>Net fixed assets</td>
<td>297.47</td>
<td>280.89</td>
<td>264.31</td>
<td>247.73</td>
<td>231.14</td>
<td>214.56</td>
<td>197.98</td>
<td>181.40</td>
<td>164.82</td>
<td>148.23</td>
</tr>
<tr>
<td>Cash & Bank balance</td>
<td>31.04</td>
<td>53.01</td>
<td>72.61</td>
<td>88.10</td>
<td>101.77</td>
<td>111.95</td>
<td>121.40</td>
<td>151.96</td>
<td>205.06</td>
<td>257.20</td>
</tr>
<tr>
<td>Total assets</td>
<td>328.52</td>
<td>333.90</td>
<td>336.92</td>
<td>335.83</td>
<td>332.91</td>
<td>326.52</td>
<td>319.38</td>
<td>333.36</td>
<td>369.88</td>
<td>405.44</td>
</tr>
<tr>
<td>Net worth</td>
<td>104.98</td>
<td>134.36</td>
<td>164.38</td>
<td>195.29</td>
<td>227.37</td>
<td>260.98</td>
<td>296.34</td>
<td>333.36</td>
<td>369.88</td>
<td>405.44</td>
</tr>
<tr>
<td>Dept equity ratio</td>
<td>2.85</td>
<td>2.54</td>
<td>2.20</td>
<td>1.79</td>
<td>1.34</td>
<td>0.83</td>
<td>0.29</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Project Cash Flow

<table>
<thead>
<tr>
<th>Particulars / Years</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td></td>
</tr>
<tr>
<td>Share Capital</td>
<td>78.51</td>
<td>-</td>
</tr>
<tr>
<td>Term Loan</td>
<td>235.54</td>
<td>347.12</td>
<td>574.06</td>
<td>971.09</td>
<td>1,564.93</td>
<td>2,310.47</td>
<td>3,269.07</td>
<td>4,460.12</td>
<td>5,864.42</td>
<td>7,502.32</td>
<td>8,368.00</td>
</tr>
<tr>
<td>Profit After Tax</td>
<td>26.46</td>
<td>29.38</td>
<td>30.02</td>
<td>30.91</td>
<td>32.08</td>
<td>33.61</td>
<td>35.36</td>
<td>37.02</td>
<td>38.65</td>
<td>40.00</td>
<td>41.50</td>
</tr>
<tr>
<td>Total Sources</td>
<td>314.06</td>
<td>43.04</td>
<td>45.96</td>
<td>46.60</td>
<td>47.50</td>
<td>48.66</td>
<td>50.19</td>
<td>51.95</td>
<td>53.60</td>
<td>53.10</td>
<td>52.14</td>
</tr>
<tr>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>Capital Expenditure</td>
<td>314.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Repayment of Loan</td>
<td>-</td>
<td>12.00</td>
<td>24.00</td>
<td>27.00</td>
<td>32.00</td>
<td>35.00</td>
<td>40.00</td>
<td>42.50</td>
<td>23.04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Application</td>
<td>314.06</td>
<td>12.00</td>
<td>24.00</td>
<td>27.00</td>
<td>32.00</td>
<td>35.00</td>
<td>40.00</td>
<td>42.50</td>
<td>23.04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Net Surplus</td>
<td>-</td>
<td>31.04</td>
<td>21.96</td>
<td>19.60</td>
<td>15.50</td>
<td>13.66</td>
<td>10.19</td>
<td>9.45</td>
<td>30.56</td>
<td>53.10</td>
<td>52.14</td>
</tr>
<tr>
<td>Add: Opening Balance</td>
<td>-</td>
<td>-</td>
<td>31.04</td>
<td>53.01</td>
<td>72.61</td>
<td>88.10</td>
<td>101.77</td>
<td>111.95</td>
<td>121.40</td>
<td>151.96</td>
<td>205.06</td>
</tr>
<tr>
<td>Closing Balance</td>
<td>-</td>
<td>31.04</td>
<td>53.01</td>
<td>72.61</td>
<td>88.10</td>
<td>101.77</td>
<td>111.95</td>
<td>121.40</td>
<td>151.96</td>
<td>205.06</td>
<td>257.20</td>
</tr>
</tbody>
</table>

Calculation of Internal Rate of Return

<table>
<thead>
<tr>
<th>Particulars / months</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit after Tax</td>
<td>26.46</td>
<td>29.38</td>
<td>30.02</td>
<td>30.91</td>
<td>32.08</td>
<td>33.61</td>
<td>35.36</td>
<td>37.02</td>
<td>38.65</td>
<td>40.00</td>
<td>41.50</td>
</tr>
<tr>
<td>Interest on Term Loan</td>
<td>27.31</td>
<td>21.26</td>
<td>18.72</td>
<td>15.83</td>
<td>12.56</td>
<td>8.77</td>
<td>4.64</td>
<td>0.68</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cash outflow</td>
<td>(314.06)</td>
<td>-</td>
</tr>
<tr>
<td>Net Cash flow</td>
<td>(314.06)</td>
<td>70.35</td>
<td>67.23</td>
<td>65.32</td>
<td>63.33</td>
<td>61.22</td>
<td>58.95</td>
<td>56.59</td>
<td>54.28</td>
<td>53.10</td>
<td>52.14</td>
</tr>
<tr>
<td>IRR</td>
<td>15.00%</td>
<td>16.58</td>
<td>33.61</td>
<td>56.33</td>
<td>81.49</td>
<td>101.77</td>
<td>111.95</td>
<td>121.40</td>
<td>151.96</td>
<td>205.06</td>
<td>257.20</td>
</tr>
<tr>
<td>NPV</td>
<td>66.0</td>
<td>57.26</td>
<td>84.21</td>
<td>111.15</td>
<td>138.09</td>
<td>165.03</td>
<td>191.97</td>
<td>218.91</td>
<td>245.85</td>
<td>272.79</td>
<td>300.73</td>
</tr>
</tbody>
</table>

Break Even Point

<table>
<thead>
<tr>
<th>Particulars / Years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Expenses</td>
<td></td>
</tr>
<tr>
<td>Fixed Expenses</td>
<td></td>
</tr>
<tr>
<td>Operation & Maintenance Exp (25%)</td>
<td>3.14</td>
<td>3.30</td>
<td>3.46</td>
<td>3.64</td>
<td>3.82</td>
<td>4.01</td>
<td>4.21</td>
<td>4.42</td>
<td>4.64</td>
<td>4.87</td>
</tr>
<tr>
<td>Interest on Term Loan</td>
<td>27.31</td>
<td>21.26</td>
<td>18.72</td>
<td>15.83</td>
<td>12.56</td>
<td>8.77</td>
<td>4.64</td>
<td>0.68</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sub Total (I)</td>
<td>47.03</td>
<td>41.14</td>
<td>38.77</td>
<td>36.05</td>
<td>32.96</td>
<td>29.36</td>
<td>25.43</td>
<td>21.68</td>
<td>21.22</td>
<td>21.45</td>
</tr>
<tr>
<td>Sales (J)</td>
<td>92.40</td>
</tr>
<tr>
<td>Contribution (K)</td>
<td>82.98</td>
<td>82.51</td>
<td>82.01</td>
<td>81.49</td>
<td>80.95</td>
<td>80.38</td>
<td>79.77</td>
<td>79.14</td>
<td>78.48</td>
<td>77.78</td>
</tr>
<tr>
<td>Break Even Point (L= G/I) (%)</td>
<td>56.68%</td>
<td>49.86%</td>
<td>47.27%</td>
<td>44.23%</td>
<td>40.71%</td>
<td>36.52%</td>
<td>31.88%</td>
<td>27.39%</td>
<td>27.04%</td>
<td>27.58%</td>
</tr>
<tr>
<td>Cash Break Even ((I)-(H)) (%)</td>
<td>36.69%</td>
<td>29.77%</td>
<td>27.05%</td>
<td>23.89%</td>
<td>20.23%</td>
<td>15.89%</td>
<td>11.09%</td>
<td>6.44%</td>
<td>5.91%</td>
<td>6.26%</td>
</tr>
<tr>
<td>Break Even Sales (J)* (L)</td>
<td>52.37</td>
<td>46.07</td>
<td>43.68</td>
<td>40.87</td>
<td>37.62</td>
<td>33.75</td>
<td>29.45</td>
<td>25.31</td>
<td>24.99</td>
<td>25.49</td>
</tr>
</tbody>
</table>

Return on Investment

<table>
<thead>
<tr>
<th>Particulars / Years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Inflow</td>
<td></td>
</tr>
<tr>
<td>Profit after Tax</td>
<td>35.95</td>
<td>41.37</td>
<td>43.24</td>
<td>45.45</td>
<td>47.99</td>
<td>51.02</td>
<td>54.34</td>
<td>57.46</td>
<td>57.26</td>
<td>56.33</td>
<td>490.41</td>
</tr>
<tr>
<td>Depreciation</td>
<td>104.98</td>
<td>134.36</td>
<td>164.38</td>
<td>195.29</td>
<td>227.37</td>
<td>260.98</td>
<td>296.34</td>
<td>333.36</td>
<td>369.87</td>
<td>405.44</td>
<td>2492.36</td>
</tr>
</tbody>
</table>
ROI 19.68%

Debt Service Coverage Ratio

<table>
<thead>
<tr>
<th>Particulars / Years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Inflow</td>
<td></td>
</tr>
<tr>
<td>Profit after Tax</td>
<td>26.46</td>
<td>29.38</td>
<td>30.02</td>
<td>30.91</td>
<td>32.08</td>
<td>33.61</td>
<td>35.36</td>
<td>37.02</td>
<td>36.51</td>
<td>35.56</td>
<td>254.85</td>
</tr>
<tr>
<td>Interest on Term Loan</td>
<td>27.31</td>
<td>21.26</td>
<td>18.72</td>
<td>15.83</td>
<td>12.56</td>
<td>8.77</td>
<td>4.64</td>
<td>0.68</td>
<td>0.00</td>
<td>0.00</td>
<td>109.76</td>
</tr>
<tr>
<td>Total (M)</td>
<td>70.35</td>
<td>67.23</td>
<td>65.32</td>
<td>63.33</td>
<td>61.22</td>
<td>58.95</td>
<td>56.59</td>
<td>54.28</td>
<td>53.10</td>
<td>52.14</td>
<td>497.27</td>
</tr>
</tbody>
</table>

Debt

<table>
<thead>
<tr>
<th>Particulars / Years</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest on Term Loan</td>
<td>27.31</td>
<td>21.26</td>
<td>18.72</td>
<td>15.83</td>
<td>12.56</td>
<td>8.77</td>
<td>4.64</td>
<td>0.68</td>
<td>0.00</td>
<td>0.00</td>
<td>109.76</td>
</tr>
<tr>
<td>Repayment of Term Loan</td>
<td>12.00</td>
<td>24.00</td>
<td>27.00</td>
<td>32.00</td>
<td>35.00</td>
<td>40.00</td>
<td>42.50</td>
<td>23.04</td>
<td>0.00</td>
<td>0.00</td>
<td>235.54</td>
</tr>
<tr>
<td>Total (N)</td>
<td>39.31</td>
<td>45.26</td>
<td>45.72</td>
<td>47.83</td>
<td>47.56</td>
<td>48.77</td>
<td>47.14</td>
<td>23.72</td>
<td>0.00</td>
<td>0.00</td>
<td>345.30</td>
</tr>
</tbody>
</table>

Average DSCR (M/N) 1.44
Annexure – 5: Details of technology service providers

<table>
<thead>
<tr>
<th>S.N</th>
<th>Name of Service Provider</th>
<th>Address</th>
<th>Contact Person and No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THERMAX LIMITED</td>
<td>6-3-649,NALANDA COMPLEX, SOMAJIGUDA,HYDERABAD-500082,INDIA TEL: (040) 23310254 Fax : (40) 23312335</td>
<td>Mr. G.Gokulakrishna E-mail: gkrishnan@thermaxindia.com Mobile: +91 970411141</td>
</tr>
<tr>
<td>2</td>
<td>CHEEMA BOILER LIMITED</td>
<td>Flat #301B,Naga Sai Nivas Sreenivasa Nagar (E) S.R. Nagar, Hyderabad-500 038,INDIA TEL: +91 (040) 66821160 Fax :+91 (40) 66821161</td>
<td>Mr. Narsimham Ganti E-mail: Chee mahyd@cheemaboilers.com Mobile: +91 9849695585</td>
</tr>
<tr>
<td>3</td>
<td>TurboTech Precision Engineering Private Limited</td>
<td>A-343, 9th Main Road, Peenya Industrial Estate, Peenya 2nd Stage Bangalore, Karnataka 560 058, INDIA Phone: +91-80-41277221, Fax: +91-80-41272767</td>
<td>Srivatsa P.A. Head - Marketing +919448992610 E Mail: marketing@turbotechindia.com Web Site: www.turbotechindia.com</td>
</tr>
</tbody>
</table>

Annexure – 6: Quotations of Techno-commercial bids for new Technology/equipment

Ref: CBL/HYD/AIL/Q2/10-11 Dt: 18-02-2011

To,

Shri. D.Gopala Rao
M/s.APITCO LIMITED ,
8th Floor ,Parisharma Bhavan,
Hyderabad-500 004.

Dear Sir,

SUB: Your requirement of 12.5 TPH (F & A 440 Deg) 44 Kg/Cm² FBC Boiler, with Paddy Husk -reg.

At the outset, We thank you very much for the kind courtesy extended to the undersigned during the meeting with you to discuss regarding your requirement of the Boiler of above capacity.

As discussed, we enclose our techno-commercial offer for your kind perusal and further action.

Trust the offer is inline with your requirement. In case of further clarifications if any please feel free to contact us.

Kindly go through our offer and let us know as to when we should call on you for further discussion.

Thanking you and assuring you of our best attention and services at all times, we remain,

Yours faithfully,

For CHEEMA BOILERS LIMITED,

NARASIMHAM GANTI
GENERAL MANAGER

098496-95585
Boiler features & about furnace

In fluidized bed combustion system, solid together with the bed material for example Badarpur sand/ refractory granules are kept suspended with the action of Primary air distributed through air nozzles.

When air is passed through an inert bed of solid particles such as sand supported on a fine mesh or grid, the air initially will seek a path of least resistance and pass upward through the sand. With further increase in the velocity, the air bubbles through the bed and the particles attain a state of high turbulence. Under such conditions, the bed assumes the appearance of a fluid and exhibits the properties associated with a fluid and hence the name ‘FLUIDISED BED’.

When the sand in a fluidized state is heated to the ignition temperature of the fuel and the fuel is sprayed continuously on the bed, the fuel will burn rapidly and the bed attains a uniform temperature due to effective mixing. This, in short, is fluidized bed combustion.

While it is essential that temperature of bed should be at least equal to ignition temperature of fuel and it should never be allowed to approach ash fusion temperature to avoid melting of ash. This is achieved by extracting heat from the bed by tubes immersed in the bed or by furnace design. The immersed bed tubes are must for high calorific value fuel such as coal to extract heat from the bubbling Fluidized bed to maintain the bed temperature, but it is not necessary in case of low calorific value fuels such as rice husk.

THE BOILER FEATURES

Boiler design:

The boiler offered to you is water cum smoke tube design to utilize the benefits of water tube & smoke tube boiler. This boiler is very compact and rugged.

About furnace:

The furnace is water cooled and leak proof. Ample space is provided to provide longer residence time for complete combustion of volatiles and fines. The evaporative tubes are vertical in configuration for better circulation and widely spaced. Furnace required minimum quantity of refractory bricks and material.
Refractory and insulation:

The water wall tubes of membrane panel a Boiler Quality strip is welded in between the tubes. Therefore no refractory is required on the outer side of these panels. The life of refractory in this is more due to paneled water walls as compared to other extended furnace boilers. Only 4” mineral wool insulation will serve the purpose.

Flexibility of fuels:

The boiler is a Multi fuel boiler and can be used for Husk, coal or any bio mass fuel (sized) in this boiler without any alteration.

Larger steam – water interface area:

The ample diameter and length gives large steam – water interface area which gives the better steam quality.

Accessories:

Boiler is equipped with fluidized bed furnace, latest air pollution control equipment and heat recovery unit. The FD and ID fans are designed to consume minimum power and for lower RPM operation thus less wear & tear and long life of the fans. All valves such as Main steam stop valves, Safety valves, Check valves, Blow down valve etc. are of leader/equivalent make and Feed water pumps are of KSB make.

Automization:

The boiler is provided with pressure switch to operate between the set pressure i.e. boiler will automatically start when the pressure comes down to the lower set pressure and automatically stop when pressure reaches higher set pressure. To maintain the water level in the boiler mobrey water level controller is provided. It automatically On / Off the feed water pump according to the water level in the drum.

Instrumentation & Control panel:

The Instrument cum electric control panel is mounted with all electrical, relays, switches etc. Apart from these all the instruments like Steam pressure gauge, Temperature gauges for furnace, hot air and flue gas temperature at various points are provided to monitor all the parameters and operate the boiler efficiently.

Thermal efficiency:

The precise air & fuel controls with help of Variable frequency drive to ensure the maximum efficiency i.e. 82 % +/- 2% on Paddy husk.
Boiler installation:

This boiler is a single piece unit, thus making it ready to install. And minimal site work during installation of boiler.

Maintenance & shut down:

The flue gas velocity is so designed that it does not allow any ash deposition anywhere inside the boiler thus no tube cleaning is required at all.
TECHNICAL SPECIFICATIONS – 10 TPH, 21.0 KG/CM² (G).

A. PERFORMANCE.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Steam Output F & A 100 Deg C</td>
<td>12.5 TPH</td>
</tr>
<tr>
<td>Pressure</td>
<td>44 kg/cm²</td>
</tr>
<tr>
<td>Dryness Fraction</td>
<td>0.98</td>
</tr>
<tr>
<td>Thermal Efficiency after the Boiler/H R U</td>
<td>82% on Husk And 83% on Coal</td>
</tr>
<tr>
<td>Flue Gas Temperature</td>
<td>250/160</td>
</tr>
</tbody>
</table>

B. DESIGN DATA.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Code Followed</td>
<td>Ibr 1950 With Latest Amendments</td>
</tr>
<tr>
<td>Design Pressure</td>
<td>65 Kg/Cm²</td>
</tr>
<tr>
<td>Material of Construction Shell</td>
<td>Astm A516/515 Grade 70 or Equivalent</td>
</tr>
<tr>
<td>Membrane Panel</td>
<td>Bs 3059 Part-1 Erw-320 or Equivalent</td>
</tr>
<tr>
<td>In Bed Header</td>
<td>Bs 3059 Part-li Seamless</td>
</tr>
<tr>
<td>Heating Surface Areas Shell</td>
<td>300 Sq. Meters</td>
</tr>
<tr>
<td>Membrane Panel (EPRS)</td>
<td>38 Sq. Meters</td>
</tr>
<tr>
<td>In bed Header</td>
<td>22 Sq. Meters</td>
</tr>
<tr>
<td>Steam Holding Capacity – Shell</td>
<td>2.2 M³</td>
</tr>
<tr>
<td>Water Holding Capacity - Shell</td>
<td>12.8 M³</td>
</tr>
<tr>
<td>Steam To Water Interface Area</td>
<td>7.2 M²</td>
</tr>
</tbody>
</table>

C. COMPONENT DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of the Shell</td>
<td>2800 Mm</td>
</tr>
<tr>
<td>Length of the Shell</td>
<td>3500 Mm</td>
</tr>
<tr>
<td>Shell Thickness</td>
<td>After Detail Engineering</td>
</tr>
<tr>
<td>Tube Plate Thickness</td>
<td>After Detail Engineering</td>
</tr>
<tr>
<td>Shell Tube Dia /Thickness</td>
<td>76.2/3.66</td>
</tr>
<tr>
<td>Shell Tube Length</td>
<td>3500 Mm</td>
</tr>
<tr>
<td>Qty in I Pass/li Pass</td>
<td>214/146</td>
</tr>
<tr>
<td>Membrane Panel Tube Dia/THK</td>
<td>63.5/3.66</td>
</tr>
<tr>
<td>Length & Qty</td>
<td>3500 MM & 90 NOS.</td>
</tr>
<tr>
<td>In Bed Header Dia/THK</td>
<td>63.5/6.35thk</td>
</tr>
<tr>
<td>Quantity</td>
<td>34 Nos.</td>
</tr>
<tr>
<td>Total No. of Nozzles (Approx)</td>
<td>723</td>
</tr>
</tbody>
</table>
D. CONNECTIONS AND FITTINGS

Main Steam Stop Valve : 200 Mm
Steam Safety Valve (One Each) : 80x100
Blow down Valve
- Membrane Panel Mm/No : 25/2
- I B H : 25/1
- Shell : 40/1
Stop Valve in the Feed Line Mm/No : 50/3
N R V in the Feed Line : 50/3
Air Vent Valve : 25/1

E. FEED WATER PUMP.

Quantity : 2 Nos
Capacity M3/Hr : 14
Pressure Head Mm Water Column : After Detail Engineering
Motor : 20 Hp
Speed : 2900 R P M

F. FORCED DRAUGHT FAN.

Quantity : 2 No-(Twin Compartment)
Capacity M3/Min : 150
Pressure Head at 40 Deg C Mm Wc : 400/625
Motor Hp/Rpm : 25/30 Hp – 1440 Rpm

G. G. INDUCED DRAUGHT FAN.

Quantity : 1 No
Capacity M3/Min : 600
Pressure Head At 180 Dec Mm Wc : 250
Motor Hp/Rpm : 50/1440.

H. HEAT RECOVERY UNIT-APH.

No. of Tubes : 330
Size of the Tubes : 60.3
Heating Surface Area : 185 M2
T-CYCLONE

- Dia of the Bottle : 1000 Mm
- No of Bottles : 4 Any
- Rotary Air Lock Valves : 5 Nos, Each 1 Hp
- Screw Feeder : 2 Nos, Each 1 Hp
Scope of Work

Designing & Engineering

- Complete designing of boiler layout at your site in consent with your engineering staff.
- Designing of boiler, fluidized bed combustion system, and other accessories for the boiler.
- Preparation of all relative drawings.
- Fabrication & supply of boiler, fluidized bed combustion system, HRU, Pollution control equipment and other accessories for the boiler.
- Supervision of commissioning of boiler.
Scope of Supply

A. Pressure parts Consists of

- **Steam drum**
 - The boiler is provided with steam shell and is of fusion – welded construction.
 - The shell is provided with end plates fitted with stay tubes and plain tubes.
 - Two man hole doors (One on top and one at bottom) are fitted with cross bars, studs and nuts.
 - The shell is complete with required stubs for mounting valves and fittings.

- **Down comers & Risers**
 - Two numbers of down comers and one riser are provided to connect the steam drum and membrane furnace water walls.

- **Furnace tubes**
 - One set of bent tubes to form radiation zone and convection zone of boiler complete with inter connecting headers.
 - The furnace is a membrane water wall construction with Boiler quality strip is welded in between the tubes.
 - One set of bed coils to control the bed temperature.

- **Feed water piping**
 - One set of feed water piping with required vales between the boiler feed water pumps and boiler shell.

- **Mountings and fittings**
 - Main steam stop valve: 1 No.
 - Auxiliary steam stop valve: 1 No.
 - Safety valve: 2 Nos.
 - Main blow down valves: 1 No.
 - Headers blow down valves: 4 Nos.
 - Drum internal consist of baffle plates, perforated plate, dry box, tray and chevron type steam separator: 1 Set.
B. Feed water system

- Boiler feed water system consisting of Two numbers of multi stage feed water pumps.

C. Fluidized bed furnace: Twin Compartment Furnace.

- Plannum chamber (Made out of 10 mm thick top plates, 6 mm thick bottom and side plates duly drilled to accommodate air nozzles for proper fluidization).
- Bed discharge system (With rotary air lock valve).
- Fluidized nozzles of graded Cast Iron.
- Doors (4 Nos.).
- Air connections (1 No.).

D. Variable frequency drive

- Electronic variable frequency drive with screw feeder and gear box for fuel feeding and control of feed.

E. Forced draught fan

- Heavy duty fan complete with air control damper made out of heavy gauge MS body with dynamically balanced impeller, heavy grade Cast Iron bearing brackets complete with MS hub, spherical roller bearings, pulleys and motor base frame suitable to handle air at ambient temperature.

F. Secondary Air System

- Made out of 3” dia MS ‘C’ class pipes with C.I. mouths (for long life of nozzles) fitted with high velocity air swirling nozzles.

G. Induced draught fan

- Induced draft fan complete with suction damper, expansion joint suitable to handle flue gases at high temperature.
H. Motor control center:

- Central control panel for central indication / control shall be fabricated out of heavy gauge MS plates.

I. Heat Recovery Unit (Air Pre heater)

- Multi pass counter current flow shell & tube type made out of 50 NB MS ‘B’ Class tubes and 5 mm thick MS body plate to pre-heat the water/air by drawing heat from flue gases for optimum efficiency of boiler complete with plate valve for ash removal.

J. Air Pollution control system

- ‘C’ Cyclone (Trema Type) with rotary air lock valve for continuous ash discharge.
Exclusions from scope of supply

A. Civil works
- Foundations for boiler, furnace and boiler accessories and boiler house.
- Supply of refractory bricks, insulation bricks, refractory material and furnace and sand required for the construction of furnace
- Civil supports for ducting or piping any etc.,
- Boiler house.

B. Mechanical
- Suitable chimney and its erection.
- Air & flue gas ducting, Structure, Platform and ladder
- Fuel preparation and conveying system (Vibratory Screen with Bucket Elevator)
- Fuel bunker Storage and feed water tanks.
- Base Plates and Foundation Bolts.
- Feed Water and Storage Tanks.

C. Piping
- Feed water piping up to suction inlet of feed water pumps.
- Steam piping from outlet of Main steam stop valve.
- Blow down / Drain / vent piping from respective valves.

D. Water treatment plant.
- Suitable water treatment plant based on the characteristics of raw water at site.

E. Electrical
- All Electrical and control cables for individual motors supplied by Cheema boilers limited.
- Earthing for motors supplied by CBL.

F. General
- Transportation and transit insurance.
- Additional pollution control equipment if any other than C-cyclone.
- Unloading of boiler and accessories at site and erection.
- I B R inspection and registration
- Boarding and lodging for Cheema’s site engineers / Supervisors.
- Any other items specifically not mentioned in these exclusions.
- Any other Pollution devise other than C Cyclone.
- Thermal Insulation with Aluminum Cladding
Terminal Points

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Suction flanges of feed water pumps strainer.</td>
</tr>
<tr>
<td></td>
<td>Inlet & outlet flanges of HRU in case of water pre heater.</td>
</tr>
<tr>
<td>Steam</td>
<td>Outlet flange of main steam valve on the boiler.</td>
</tr>
<tr>
<td>Fuel Paddy husk</td>
<td>Inlet of fuel feeders.</td>
</tr>
<tr>
<td>Ash</td>
<td>Outlet of</td>
</tr>
<tr>
<td></td>
<td>- Bed drain pipes.</td>
</tr>
<tr>
<td></td>
<td>- Ash drain gate at the bottom of HRU.</td>
</tr>
<tr>
<td></td>
<td>- Rotary airlock feeder at the bottom of MDC ash chute.</td>
</tr>
<tr>
<td>Flue gas</td>
<td>Outlet of Boiler / inlet & outlet of HRU or APH / inlet & outlet of ID fan</td>
</tr>
<tr>
<td>Drains and vents</td>
<td>Outlet flange of</td>
</tr>
<tr>
<td></td>
<td>✓ Blow down valve from steam drum.</td>
</tr>
<tr>
<td></td>
<td>✓ Furnace tube header drain valve.</td>
</tr>
<tr>
<td></td>
<td>✓ Main header blow down valve</td>
</tr>
<tr>
<td></td>
<td>✓ Water level gauges drain cock.</td>
</tr>
<tr>
<td></td>
<td>✓ Liquid level limiter drain valve.</td>
</tr>
<tr>
<td></td>
<td>✓ Safety valve discharge flange.</td>
</tr>
<tr>
<td></td>
<td>✓ Air vent valve.</td>
</tr>
<tr>
<td>Electricals</td>
<td>LT Inlet & outlet terminals of boiler MCC.</td>
</tr>
<tr>
<td>Motors</td>
<td>Terminal points of individual motor.</td>
</tr>
</tbody>
</table>
Performance Parameters

EFFICIENCY: on Paddy Husk 82 +/- 2% on GCV basis

PERFORMANCE CRITERIA:

FUEL

The output and other performance parameters of the boiler specified in this offer hold good only if fuel of the following characteristics is charged to the boiler. Any variation in the characteristics of fuel will alter the performance.

Rice husk

Gross calorific value of husk Kcals/kg. (min.) : 3200
Moisture (Inherent) : Less than 10%

WATER

The performance of the boiler under this offer is based on filtered and treated water of the following quantity being available.

Specifications of feed water to boiler

<table>
<thead>
<tr>
<th>Specification</th>
<th>Unit</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Hardness as CaCO₃</td>
<td>mg/lt</td>
<td>5 max.</td>
</tr>
<tr>
<td>pH value</td>
<td></td>
<td>8.5 to 9.5</td>
</tr>
<tr>
<td>Oil Content</td>
<td>ppm</td>
<td>Nil</td>
</tr>
<tr>
<td>Free CO₂</td>
<td>ppm</td>
<td>Nil</td>
</tr>
<tr>
<td>Bound CO₂</td>
<td>ppm</td>
<td>5 Max.</td>
</tr>
<tr>
<td>TDS</td>
<td>ppm</td>
<td>200 Max.</td>
</tr>
</tbody>
</table>

Specifications of water in boiler

<table>
<thead>
<tr>
<th>Specification</th>
<th>Unit</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hardness</td>
<td>ppm</td>
<td>5 Max.</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>ppm</td>
<td>15-20% of TDS</td>
</tr>
<tr>
<td>pH value</td>
<td>ppm</td>
<td>10.5 - 11</td>
</tr>
<tr>
<td>Sodium Sulphite Na₂SO₃</td>
<td>ppm</td>
<td>30-50 Max.</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>ppm</td>
<td>15 to 30</td>
</tr>
<tr>
<td>Oxygen O₂</td>
<td>ppm</td>
<td>Nil</td>
</tr>
<tr>
<td>TDS</td>
<td>ppm</td>
<td>Less than 3500</td>
</tr>
</tbody>
</table>
Commercial Terms & Conditions

Basic price for supply of boiler 12.5 TPH Boiler(F & A 440 Deg C) ,44 Kg/Cm² along with Air Pre Heater and Dust Collecting Equipment(C Cyclone) as per Annexure-iv is Rs.85,00,000/-Ex-Works- Kurali, Punjab.

Packing & forwarding is extra on basic price @ 2.5%

Taxes & Duties are extra as applicable at the time of dispatch or invoicing. The taxes applicable at present are

- Central Excise duty is exempted on Husk Fired Boilers and the same is 10.30% for Coal Firing Units
- Central Sales Tax 2% against Form C.

Transportation & transit insurance: At Actuals.

Unloading & erection is extra at actuals(Pl refer to Annexure V of Page 12)

Supervision of erection & commissioning is extra @ Rs.1500/- per day.

Delivery 4 Months from the date of Purchase Order along with the advance and steaming is 6 Months from the date of Purchase Order.

Payment terms are 40% advance along with Purchase Order and balance along with applicable taxes & duties against submission of Pro forma invoice before dispatch.

This offer is valid for 30 days from its date and there on wards subject to confirmation from our office.

Terms & Conditions of Sale

Warranty

The boiler is warranted against malfunction arising out of faulty design, material and / or workmanship for a period of 12 months from the date of commissioning or 18 months from the date of Invoice, whichever is earlier. This clause will be applicable if the Purchaser strictly adheres to manufacturer’s recommendations on feed water and fuel quality.

Bought out items

The purchaser shall indemnify the manufacture for any delay arising from delay in supply of specific make of sub delivery insisted upon the purchaser where the manufacturer has no control over the delivery of that sub delivery.
Handing over of the boiler

The boiler shall be deemed to have been delivered and commissioned as per manufacturer scope and the purchaser shall issue a certificate to that effect. On achieving the rated steam parameters at the time of commissioning, it shall be deemed that the manufacturer has completed the performance tests. Manufacturer stands no guarantee if the boiler is put to commercial use without the authorisation of the manufacturer.

Boiler Registration

The boiler is manufactured as per Indian Boiler Regulations with latest amendments / ISO. One set of relevant documents and certificates signed by the Director of Boiler, Punjab will be forwarded to the customer. The purchaser at his cost shall complete subsequent formalities for registration of the boiler with boiler inspectorate of the state concerned.

Warehousing clause

If payment is not made within 15 days of date of proforma invoice, we reserve the right to divert the ordered material. We will give a fresh delivery period and price at the time of diversion which will be binding on the purchaser and the contract can not be rendered void on this account. If the goods cannot be diverted, change will be applicable for storage, insurance and interest at the rate of 1% of the invoice value for each week or part thereof commencing 15 days from the date of proforma invoice. Warehousing charge is subject to a maximum of 5%.

Place of Jurisdiction

In the event of any dispute of arising as result of contracting to supply against this offer and quotation, the place of Jurisdiction will be Ropar (Punjab) and not any other place.

Force Majeure

All our offer are subject to force majeure by which is meant causes beyond of our control such as war, invasion, civil disobedience, govt. orders, directives or restrictions, strikes, lockouts, riots, fire earthquakes, floods, accident delay or inability to obtain labour, raw material, railway wagon, shipping space or any such and similar causes what so ever.

General

On receipt of the purchase order the terms and conditions specified in our offer shall be deemed to have been accepted by the purchaser except in cases when the purchase order specifies otherwise.
Special Note

Please note that this offer is made strictly on the basis of divisible contract. The property in the goods shall pass to the buyer on the goods being handed over to the carrier for onward despatch to site endorsement and waybills in your favour.

Excess Materials

The excess materials send to site along with components for contingency and safe transportation purpose will be reused up to the maximum extent possible (or) taken back by CBL.

for CHEEMA BOILERS LIMITED,

NARASIMHAM GANTI.

LIST OF BOUGHT OUT ITEMS

NOTE: THE BELOW MENTIONED LIST IS APPLICABLE FOR THE EQUIPMENTS WHICH WILL BE UNDER CBL SCOPE AND DOES NOT IMPLY THAT THE EQUIPMENTS AND ITS SUB VENDORS SO LISTED ARE IN CBL SCOPE OF SUPPLY.

A. MECHANICAL

<table>
<thead>
<tr>
<th>Item</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>FANS</td>
<td>CBL</td>
</tr>
<tr>
<td>FEED PUMP</td>
<td>KSB / JOHNSON</td>
</tr>
<tr>
<td>GEARBOX</td>
<td>RADICON / GREAVES</td>
</tr>
<tr>
<td>COUPLINGS</td>
<td>RATHI</td>
</tr>
<tr>
<td>BEARING</td>
<td>SKF / FAG / ZKL</td>
</tr>
<tr>
<td>DIRECT WATER LEVEL GAUGE</td>
<td></td>
</tr>
<tr>
<td>- TUBULAR TYPE</td>
<td>LEVCON / SHARP</td>
</tr>
<tr>
<td>- TRANSPARENT</td>
<td>LEVCON</td>
</tr>
<tr>
<td>METALLIC BELLOWS</td>
<td>CBL</td>
</tr>
<tr>
<td>AIR & FLUE GAS DAMPERS</td>
<td>CBL</td>
</tr>
</tbody>
</table>
ERW TUBES: TATA / TPI
BOILER SHELL PLATE: SAIL / IMPORTED
AIR NOZZLES: CBL

B. VALVES

IBR VALVES: 21 KG / CM² (LEADER / SHARP)

SAFETY VALVES: FAINGER / DARLING
BLOW DOWN VALVES: SHARP / LEVCON
NON-IBR VALVES: SHARP / FLUIDLINE

C. CASTINGS

MANHOLE DOOR: CBL
OTHER CASTINGS: CBL

D. ELECTRICALS

MOTORS: ABB / CROMPTON
ACTUATORS: ROTARK / AUMA
MCC / CONTROL PANEL: CBL
LOCAL PUSH BUTTON STATION: CBL
AIR CIRCUIT BREAKER: SIEMENS / L & T
FUSE: SIEMENS / L & T
SWITCHES: SIEMENS / L & T
SWITCH / FUSE UNIT: SIEMENS / L & T
THERMAL OVERLOAD RELAY: SIEMENS / L & T / SPRECHER SCHUH
CONTACTORS: SIEMENS / L & T / SPRECHER SCHUH
AMMETER / VOLT METER: MECO / AE / RISHAB
PUSH BUTTONS: ESBEE / SIEMENS
SELECTOR SWITCH: SULZER / SIEMENS
INDICATING LAMPS: ESBEE / SIEMENS
Cogeneration-1000kW

<table>
<thead>
<tr>
<th>Item</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCB</td>
<td>SIEMENS / L & T / SPRECHER SCHUH</td>
</tr>
<tr>
<td>TERMINAL BLOCKS</td>
<td>PHOENIX / ELMEX</td>
</tr>
<tr>
<td>MCCB</td>
<td>SIEMENS / L & T / SPRECHER SCHUH</td>
</tr>
<tr>
<td>TIMER</td>
<td>L & T / EAPL / SPRECHER SCHUH / GIC</td>
</tr>
<tr>
<td>CABLES</td>
<td>GEMSCAB / ECKO</td>
</tr>
<tr>
<td>VFD</td>
<td>ABB/ ALLEN BRADLEY</td>
</tr>
</tbody>
</table>

E. INSTRUMENTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP. GAUGES</td>
<td>CBL / GIC / FORBES</td>
</tr>
<tr>
<td>PRESSURE GAUGES</td>
<td>CBL / GIC / FORBES</td>
</tr>
<tr>
<td>THERMOCOUPLES</td>
<td>TEMPSON / TEMPEX</td>
</tr>
<tr>
<td>PRESSURE SWITCH</td>
<td>INDFOS</td>
</tr>
<tr>
<td>TEMP. SWITCH</td>
<td>INDFOS</td>
</tr>
<tr>
<td>LEVEL SWITCH</td>
<td>MALHOTRA</td>
</tr>
<tr>
<td>LIMIT SWITCH</td>
<td>CUTLERS HAMMER</td>
</tr>
<tr>
<td>DRAUGHT GAUGE</td>
<td>CBL</td>
</tr>
<tr>
<td>INDICATOR / 6 POINT TEMP.</td>
<td>TEMPEX</td>
</tr>
<tr>
<td>SCANNER</td>
<td></td>
</tr>
</tbody>
</table>
Cogeneration - 1000kW

TT/MKG/APITO 3/Q-5126.1/10-11

M/s APITO Limited
8th Floor, Parasarabha Bhavan
Basheerbagh, Hyderabad
AP 500 004

Subject: ECT™ Steam Turbine System, Capacity: 1000kW (1250KVA)

Dear Sir,

Please find enclosed the Techno-Commercial Proposal for our ECT™ Steam Turbine System which addresses your requirements.

The ECT™ Steam Turbine Systems have the following unique advanced features, which make them ideal for your application:

- Custom-optimized turbine blades, designed specifically to suit process steam conditions, ensuring 10-15% greater efficiency.
- One-piece turbine wheel CNC-milled from a single hardened Stainless Steel forging, for maximum accuracy, strength and life.
- Integrated gear-box, eliminating bearings, seals and high-speed couplings, for maximum reliability and simplicity.
- Compact packaging, minimizing floor-space and foundation requirements.
- Minimum weight design, for ease of handling and installation.

We hope this offer meets your requirements. Please call us for any clarifications.

Yours Truly
For TurboTech Precision Engineering Private Limited

V. Kanagasabapathy
Manager – Marketing
Mob: 944 899 2684
Techno-Commercial Proposal

ECT™

Steam Turbine Generator System

Offer Reference: TT/MKTG/APITC0-3/Q-5126-1/10-11

TurboTech Precision Engineering Private Limited
A-343, 9th Main Road, Peenya Industrial Estate, Peenya 2nd Stage
Bangalore, Karnataka 560 051, INDIA
PH. No +91-80-41277221, Fax: +91-80-41272767
E Mail: marketing@turbotechindia.com
Web Site: www.turbotechindia.com
Contents

1.0 SYSTEM CONTRACTUAL GUARANTEE .. 4
2.0 SCOPE OF SUPPLY .. 6
 2.1 TURBINE MODULE .. 7
 2.2 GEARBOX .. 8
 2.3 COUPLING .. 9
 2.4 LUBRICATION SYSTEM ... 10
 2.5 TURBINE CONTROL PANEL WITH ALLENBRADLEY PLC PANEL 11
 2.6 ELECTRICAL CONTROL PANEL (BREAKER PANEL) 12
 2.7 ALTERNATOR .. 14
 2.8 THROTTLE VALVE (MAIN INLET CONTROL VALVE) 15
 2.9 MOUNTING SKID ASSEMBLY .. 16
3.0 LIMIT OF TENDER AND LIST OF EXCLUSIONS (CUSTOMER SCOPE) ... 17
4.0 DRAWING AND DOCUMENTATION SCHEDULE 18
5.0 PRICE SCHEDULE ... 19
6.0 TERMS AND CONDITION OF SALE ... 22
1.0 SYSTEM CONTRACTUAL GUARANTEE

The Generator system will generate a power of 1000 kW ± 3% at the generator terminal with the following parameters as specified in Table 1.

Table 1: Constituents

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>UNITS</th>
<th>DESIGN POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine inlet steam Pressure</td>
<td>Kg/cm²(g)</td>
<td>44.0</td>
</tr>
<tr>
<td>Turbine inlet steam Temperature</td>
<td>°C</td>
<td>440</td>
</tr>
<tr>
<td>Inlet steam flow at the turbine</td>
<td>TPH</td>
<td>12.5</td>
</tr>
<tr>
<td>Exhaust steam Pressure at the turbine outlet flange</td>
<td>Kg/cm²(g)</td>
<td>3.5</td>
</tr>
<tr>
<td>Exhaust steam Temperature at the turbine outlet flange</td>
<td>°C</td>
<td>195</td>
</tr>
<tr>
<td>Exhaust steam flow at the turbine outlet flange</td>
<td>TPH</td>
<td>12.5</td>
</tr>
<tr>
<td>Output of power at the generator terminal</td>
<td>KW</td>
<td>1000 ±3%</td>
</tr>
</tbody>
</table>

Note:

1. The flow and power output data apply at steady state and nominal inlet steam conditions at turbine inlet flange, with the control valve fully opened, deposit free blading and design point performance of Balance of plant equipments.
2. This steam condition consumption does not include the power requirements of any Auxiliary equipments.
3. Instrumentation tolerance of ± or – 2.5% is allowed as per international testing practices.
4. Steam quantity should be maintained at the inlet point for guarantee point as mentioned above.
5. Performance under off-design conditions will depend on appropriate nozzle tuning / replacing for various flow conditions.
2.0 SCOPE OF SUPPLY

<table>
<thead>
<tr>
<th>Ref Para</th>
<th>Item</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Turbine Module</td>
<td>1</td>
</tr>
<tr>
<td>2.2</td>
<td>Gear Box</td>
<td>1</td>
</tr>
<tr>
<td>2.3</td>
<td>Coupling between Gear Box and Alternator</td>
<td>1</td>
</tr>
<tr>
<td>2.4</td>
<td>Lubrication System (MOP, AOP, Piping & Accessories)</td>
<td>1</td>
</tr>
<tr>
<td>2.5</td>
<td>Turbine Governing Panel with Allen Bradley Micro Logix 1500 Series PLC</td>
<td>1</td>
</tr>
<tr>
<td>2.6</td>
<td>Electrical Control Panel (415 V Breaker Panel)</td>
<td>1</td>
</tr>
<tr>
<td>2.7</td>
<td>Alternator – 1250KVA, 415V, 3 phase, 1500RPM, 0.8 pf, IP 23 (Air Cooled)</td>
<td>1</td>
</tr>
<tr>
<td>2.8</td>
<td>Throttle Valve (Man Turbine Inlet Valve- Pneumatically) Operated</td>
<td>1</td>
</tr>
<tr>
<td>2.9</td>
<td>Unitary Mounting skid, Integral oil tank along with AVM's</td>
<td>1</td>
</tr>
<tr>
<td>2.10</td>
<td>Quick Shut off Valve for Emergency Shut-Off</td>
<td>1</td>
</tr>
<tr>
<td>2.11</td>
<td>Vibration Monitoring Probes</td>
<td>2</td>
</tr>
<tr>
<td>2.12</td>
<td>Speed Redundant System</td>
<td>2</td>
</tr>
</tbody>
</table>
2.1 TURBINE MODULE

The turbine module contains the aerodynamic bladed components of the turbine, namely the nozzle and the rotor. The turbine module consists chiefly of the following:

- **Inlet manifold**: Machined from high quality cast steel (ASTM A 216 GR WC9) casting, conducts the inlet steam to the nozzle.
- **Nozzle**: Aerodynamic blading, 4-axis CNC milled onto the periphery of a forged SS ring.
- **Rotordisk**: Aerodynamic blading, 4-axis CNC milled onto the periphery of a forged SS disk.
- **Exhaust hood**: Machined from high quality cast steel (ASTM A 216 GR WC9) casting conducts the exhaust air from the rotor to the exhaust piping.

The turbine module does not contain bearings or seals, as the turbine wheel is directly mounted on the gearbox input shaft. This also eliminates the high-speed coupling.

TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Design-Point Parameters</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Turbine Type</td>
<td>Multi stage</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Casing Type</td>
<td>Non-Split one-piece</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Working Fluid</td>
<td>Superheated steam</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inlet Pressure</td>
<td>440.0</td>
<td>Kg/cm²(g)</td>
</tr>
<tr>
<td>5</td>
<td>Inlet Temperature</td>
<td>440</td>
<td>°C</td>
</tr>
<tr>
<td>6</td>
<td>Exhaust Pressure</td>
<td>3.5</td>
<td>Kg/cm²(g)</td>
</tr>
<tr>
<td>7</td>
<td>Exhaust Temperature</td>
<td>195</td>
<td>°C</td>
</tr>
<tr>
<td>8</td>
<td>Steam Flow rate</td>
<td>12,500</td>
<td>Kgs/hr</td>
</tr>
<tr>
<td>9</td>
<td>Speed</td>
<td>12,000</td>
<td>RPM</td>
</tr>
<tr>
<td>10</td>
<td>Material of Construction, Casings</td>
<td>Suitable material to withstand the operating pressure & Temperature</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Material of Construction, Nozzle</td>
<td>AISI 304</td>
<td>SS Forging</td>
</tr>
<tr>
<td>12</td>
<td>Material of Construction, Turbine Wheel</td>
<td>Suitable SS Forging</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Manufacturer</td>
<td>TurboTech</td>
<td></td>
</tr>
</tbody>
</table>

2.2 GEARBOX

The turbine module is mounted on the gearbox face, with the turbine wheel mounted directly on the input shaft flange in an overhung manner. The gearbox reduces the high speed of the turbine shaft to the lower generator speed. The mounting face of the gearbox is provided with a combination air-cum-oil seal. The gearbox consists mainly of the following:

a. Housing (top & bottom halves): Precision machined carbon-steel lubrication
b. High-speed shaft: Precision machined from alloy steel forging, with integral helical pinion gear
c. Ball gear: Precision machined from alloy steel forging, helical gear
d. Output Shaft: Precision machined from alloy-steel forging, provided with a drive spline on coupling end

e. Seal: This consists of an air-buffered carbon ring labyrinth, consisting of multiple segmented graphite rings contained in horizontally-split seal housing.

<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATIONS</th>
<th>GEARBOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Design-Point Parameters</td>
</tr>
<tr>
<td>1</td>
<td>Input Speed</td>
</tr>
<tr>
<td>2</td>
<td>Gear Ratio</td>
</tr>
<tr>
<td>3</td>
<td>Output Speed</td>
</tr>
<tr>
<td>4</td>
<td>Gear-box Type</td>
</tr>
<tr>
<td>5</td>
<td>Gearing Type</td>
</tr>
<tr>
<td>6</td>
<td>Gearing Accuracy</td>
</tr>
<tr>
<td>7</td>
<td>Gearbox Rating</td>
</tr>
<tr>
<td>8</td>
<td>Bearings, high-speed</td>
</tr>
<tr>
<td>9</td>
<td>Bearings, low-speed</td>
</tr>
<tr>
<td>10</td>
<td>Gearbox Efficiency</td>
</tr>
<tr>
<td>11</td>
<td>Lubrication</td>
</tr>
<tr>
<td>12</td>
<td>Lubrication Oil rating</td>
</tr>
<tr>
<td>13</td>
<td>Manufacturer</td>
</tr>
</tbody>
</table>
2.3 COUPLING

The unit is a flexible shim-pack tube coupling, which is laterally flexible and torsionally rigid. It requires no lubrication. The coupling hubs and center tube are made from carbon steel forgings, and the shim-pack is of stainless steel AISI 301, hardened by cold-working. The carbon steel components of the coupling are protected by two-part epoxy paint.

<table>
<thead>
<tr>
<th>No.</th>
<th>Design-Point Parameters</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maximum Speed</td>
<td>1,500</td>
<td>RPM</td>
</tr>
<tr>
<td>2</td>
<td>Design speed</td>
<td>1,500</td>
<td>RPM</td>
</tr>
<tr>
<td>3</td>
<td>Manufacturer</td>
<td>TurboTech</td>
<td></td>
</tr>
</tbody>
</table>
2.4 LUBRICATION SYSTEM

The gearbox is provided with a pressurized re-circulating type lubrication system, consisting of:

1. Gearbox-driven Main oil pump (MOP)
2. Electric-motor driven Auxiliary oil pump (AOP)
3. Oil strainer
4. Oil filter (2 x 100%)
5. Plate type heat exchanger (Oil cooler)
6. Pressure regulation valves
7. Check valves
8. Oil distribution manifold
9. Oil jets
10. Interconnecting piping

For normal operation, the gearbox mounted Main Oil pump will provide pressurization. During starts and stops, the Auxiliary Oil Pump provides pre-and post-lubrication. Changeover from AOP to the MOP is automatic, and is by means of an oil-pressure switch signaling the PLC.

<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATIONS</th>
<th>LUBRICATION SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Design-Point Parameters</td>
</tr>
<tr>
<td>1</td>
<td>Oil Viscosity rating</td>
</tr>
<tr>
<td>2</td>
<td>Oil type</td>
</tr>
<tr>
<td>3</td>
<td>Flow rate, main oil pump</td>
</tr>
<tr>
<td>4</td>
<td>Flow rate, auxiliary oil pump</td>
</tr>
<tr>
<td>5</td>
<td>Oil pump type (main & auxiliary)</td>
</tr>
<tr>
<td>6</td>
<td>Oil Filter type</td>
</tr>
<tr>
<td>7</td>
<td>Cartridge Type, Oil Filter</td>
</tr>
<tr>
<td>8</td>
<td>Filtration rating</td>
</tr>
<tr>
<td>9</td>
<td>Instrumentation</td>
</tr>
<tr>
<td>10</td>
<td>Manufacturer</td>
</tr>
</tbody>
</table>

2.5 TURBINE CONTROL PANEL

The ECT system is controlled using a digital PLC, running a proprietary control algorithm. The PLC controls all aspects of the ECT system's operations, including START, RUN, STOP, TRIP and health-monitoring. Further, the PLC program can be customized to accept digital and analog inputs from the plant operator, both locally and remotely.

The PLC along with its attendant power supply and input cards is mounted in the Turbine Control Panel (TCP). The TCP contains only instrumentation and HMIs / displays, and is isolated from the high-power electrical switch-gear and bus-taps.

<table>
<thead>
<tr>
<th>No.</th>
<th>Design-Point Parameters</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type</td>
<td>Console type, shaded rear end, front access</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Material of Construction</td>
<td>16swg CRCA steel sheet</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Digital Energy-Meter</td>
<td>V, A, Hz, KVA, pf, kW, kW-h</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PLC with HMI</td>
<td>Manufacturer: Allen Bradley</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Alarm and Trip annunciation</td>
<td>PLC HMI</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>START / STOP Control</td>
<td>Key-switch</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EMERGENCY STOP (Mushroom button latching)</td>
<td>Directly shuts-off Control valve</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Mech. Trip: Over-speed</td>
<td>PLC Logic, Programmable</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mech. Trip: Low oil pressure (Pres. Switch)</td>
<td>PLC Logic, Programmable</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mech. Trip: High bearing temp. (#1 and #2 RTD)</td>
<td>PLC Logic, Programmable</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mech. Trip: Low instr. Air Pressure (Pres. Switch)</td>
<td>PLC Logic, Programmable</td>
<td></td>
</tr>
</tbody>
</table>

From switch gear panel one signal will be taken to PLC For the following Electrical trip

- Elec. Trip: Earth fault (Relay, signaling PLC) PLC Logic, Programmable
- Elec. Trip: Over load (ACB, signaling PLC) PLC Logic, Programmable
- Elec. Trip: Over Current (Relay, signaling PLC) PLC Logic, Programmable
- Elec. Trip: Under Voltage (Relay, signaling PLC) PLC Logic, Programmable
- Elec. Trip: Over Frequency (Relay, signaling PLC) PLC Logic, Programmable
- Elec. Trip: Under Frequency (Relay, signaling PLC) PLC Logic, Programmable

Manufacturer: Turbo Tech
2.6. ELECTRICAL CONTROL PANEL (BREAKER PANEL)

Electrical control panel description and parameters:

<table>
<thead>
<tr>
<th>Make</th>
<th>TurboTech make</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Floor mounted cubic type, free standing and dead rear end and front access</td>
</tr>
<tr>
<td>Material of Construction</td>
<td>16 Gauge CRCA steel sheet.</td>
</tr>
<tr>
<td>RELAYS</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Electro-mechanical type</td>
</tr>
<tr>
<td>Make</td>
<td>Any Reputed make</td>
</tr>
<tr>
<td>Meters</td>
<td>Analog / Digital</td>
</tr>
<tr>
<td>System</td>
<td>3 Phase, unbalanced load</td>
</tr>
<tr>
<td>Reference standard</td>
<td>IS:1248</td>
</tr>
<tr>
<td>Ammeter with selector switch</td>
<td>Supplied with suitable rating</td>
</tr>
<tr>
<td>Voltmeter with selector switch</td>
<td>Supplied with suitable rating</td>
</tr>
<tr>
<td>MDM (Multi Digital Meter)</td>
<td>Indicates, V, A, Hz, KVA, KVAR, PF etc.</td>
</tr>
<tr>
<td>CURRENT TRANSFORMERS</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Tape Wound Type</td>
</tr>
<tr>
<td>Rating</td>
<td>Supplied with suitable rating</td>
</tr>
</tbody>
</table>

PROTECTION CTs

<table>
<thead>
<tr>
<th>Ratio</th>
<th>5 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>5P10</td>
</tr>
<tr>
<td>Burden</td>
<td>15 VA</td>
</tr>
<tr>
<td>Quantity</td>
<td>3 Nos</td>
</tr>
</tbody>
</table>

METERING CTs

<table>
<thead>
<tr>
<th>Ratio</th>
<th>5 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>1</td>
</tr>
<tr>
<td>Burden</td>
<td>15 VA</td>
</tr>
<tr>
<td>Quantity</td>
<td>3 Nos</td>
</tr>
</tbody>
</table>

BUSBARS MATERIALS

Aluminum EC-913 grade / Copper

INDICATING LAMPS

<table>
<thead>
<tr>
<th>Breaker on/off positions</th>
<th>3 Nos (on- off- trip)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming busbar live</td>
<td>3 Nos</td>
</tr>
<tr>
<td>Outgoing busbar live</td>
<td>3 Nos</td>
</tr>
<tr>
<td>Aux. AC supply on</td>
<td>1 No</td>
</tr>
<tr>
<td>Emergency stop</td>
<td>Yes</td>
</tr>
<tr>
<td>Earth fault</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>YES/NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over load</td>
<td>YES</td>
</tr>
<tr>
<td>Over Current</td>
<td>YES</td>
</tr>
<tr>
<td>Short circuit</td>
<td>YES-Through ACB</td>
</tr>
<tr>
<td>Over Voltage</td>
<td>YES</td>
</tr>
<tr>
<td>Under Voltage</td>
<td>YES</td>
</tr>
<tr>
<td>Over Frequency</td>
<td>YES-Through PLC</td>
</tr>
<tr>
<td>Under Frequency</td>
<td>YES-Through PLC</td>
</tr>
<tr>
<td>Over Speed</td>
<td>YES</td>
</tr>
<tr>
<td>Lube oil low pressure</td>
<td>YES</td>
</tr>
<tr>
<td>Turbine front bearing temp</td>
<td>YES</td>
</tr>
<tr>
<td>Turbine rear bearing temp</td>
<td>YES</td>
</tr>
<tr>
<td>High back pressure</td>
<td>YES-Through PLC</td>
</tr>
<tr>
<td>Quick Shutoff valve sense</td>
<td>YES-Through PLC</td>
</tr>
<tr>
<td>Lube oil high pressure</td>
<td>YES</td>
</tr>
<tr>
<td>Turbine vibrations</td>
<td>YES</td>
</tr>
<tr>
<td>Turbine front bearing temperature</td>
<td>YES</td>
</tr>
<tr>
<td>Turbine rear bearing temperature</td>
<td>YES</td>
</tr>
<tr>
<td>Alt DE bearing temperature</td>
<td>YES</td>
</tr>
<tr>
<td>Alt NDE bearing temperature</td>
<td>YES</td>
</tr>
<tr>
<td>Alt winding temperature</td>
<td>YES</td>
</tr>
<tr>
<td>Isolate / Solo mode of operation</td>
<td>YES</td>
</tr>
<tr>
<td>Synchronisation with DG / Grid</td>
<td>NO</td>
</tr>
</tbody>
</table>
1.5 Alternator

Make
Kriostar / Leroy Somer / Crompton / Reputed make

Rating
Horizontal Shaft, Double bearings, Foot mounted.

KVA
1250 KVA

Voltage
415V ±5%

Frequency
50Hz ±3%

No. of phases
3

Rated speed
1500 RPM

No. of poles
4

Connection
Star

Insulation
Class H

Temperature rise for both rotor & stator
Limited to class H

Ambient
40 deg C

Duty
SI (continuous operation)

Rotation
Clockwise direction from Driving End.

Phase sequence
LVW

Type of excitation
Self excitation

Standards
IS-12231/691

Enclosure
IP-23

Efficiency at 100% load
94.7%

Over speed
Suitable for 120% rated speed or 1 minutes.

Over load
Suitable for 10% overload for 1hr every 12 hours

Momentary overload
150% for 15 seconds

Short circuit with stand ability
3 times rated current for 10 seconds

Wave form distortion factor at no load between lines
Less than 3%

Bearing(s) Qty.
2 Nos

Type
Anti-friction ball / roller

Lubrication
Grease lubricated

Isolate / Solo mode of operation
Yes

Synchronisation with BS / Grid
No
The turbine will be provided with a pneumatically-operated trip-cum-throttle valve. The valve is provided with a servo-positioner, controlled via the PLC. The valve is power-to-open, with a spring-actuated quick-shutoff trip action. It features a fail-safe quick-shutoff solenoid to "dump" the air pressure in the actuator in case of a trip. The valve will be fully compliant with Customer specifications.

<table>
<thead>
<tr>
<th>No.</th>
<th>Design-Point Parameters</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type</td>
<td>Globe type, single seat</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Material of Construction-Body</td>
<td>Cast steel Casting</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Nominal Size</td>
<td>**</td>
<td>Inch</td>
</tr>
<tr>
<td>4</td>
<td>Pressure Rating</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Actuator Type</td>
<td>Piston</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Servo-Positioner</td>
<td>SmartPositioner</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Instrumentation Air Requirement</td>
<td>4.0 bar(g)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Electrical power</td>
<td>24 V, DC</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Manufacturer</td>
<td>Flow serve / Samson</td>
<td></td>
</tr>
</tbody>
</table>

** will be provided during detailed engineering
2.9 MOUNTING SKID ASSEMBLY

The ECT system and the lubrication system will be mounted on a common skid. The skid is fabricated using carbon steel sections and plates, stress-relieved and machined for accuracy and long-term stability. The skid is provided with a base for the generator. The entire skid assembly is supported anti-vibration mounts, to isolate the floor from the machine vibrations. This obviates the need to grout the assembly onto the floor, and consequently an ordinary industrial concrete floor capable of supporting normal industrial loads is sufficient.
3.0 LIMIT OF TENDER AND LIST OF EXCLUSIONS (CUSTOMER SCOPE)

LIMIT OF TENDER:
This offer is complete within the following limits beyond which purchaser shall arrange any and all equipment:
- Inlet flange of the turbine and critical equipments which will be supplied as loose along with the turbine (like main inlet control valve, quick shut off valve)
- Exhaust flange of the turbine
- Inlet and outlet flanges of the cooling water connections of the oil cooler
- Inlet and outlet flanges of BOF equipments and default inter connecting pipes
- Turbine drains with drain plugs terminated at base plate
- Instrument air connection ports wherever applicable
- Utility/auxiliary power at the control panel terminals
- Incoming terminal of Alternator
- Incoming terminals to each motors

EXCLUSION:
Following are excluded from Turbotech's scope of supply and also scope of work:
- Any statutory approvals and local licenses
- Turbine Bypass System, including lines, valves and instruments
- Any civil Design/structural design/engineering/construction
- Crane and gantry in Power House
- All steam, Air and Water piping design/supply/erection outside the turbine battery limit
- Piping flanges, hardwares and gasket outside the turbine battery limit
- Initial fill of oil, Chemicals & lubricants for flushing
- Simple supports / 6 DOF's
- Cooling water circuits with necessary accessories
- Steam flow meter & Y-strainer at Turbine inlet (Strongly Recommended)
- Gate valves, isolation Valves
- Vent Valve along with Vent Blower Package (Strongly Recommended)
- Earthing for equipments and Earth Pits
- Bus bars and trucking
- Power, Control & Instrumentation cables
- Cable trays and trenches with end termination
- Power evacuation from breaker panel
- Synchronisation panel
- Electrical distribution system
- Erection and Commissioning above said items
- Any item not specifically mentioned in Section 2.0 "Scope of Supply".
4.0 DRAWING AND DOCUMENTATION SCHEDULE

The following documents form the Standard Documentation Package:

1. Dimensioned Installation Drawing
2. Piping and Instrumentation Diagram (P&ID) of the turbine installation, including Instrumentation Air and Cooling Water circuits
4. Bill of Materials

This will be submitted for information / approval within 2 to 4 weeks from date of receipt of technically & commercially clear purchase order. If there is no adverse customer comment within 7 days of receipt of documents, we will presume that the same is in order and it will be released for manufacture.

All other documents requested by the customer will be charged on a mutually agreed basis.

Final drawings and documents shall be submitted along with supply.
5.0 PRICE SCHEDULE

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Unit Price ₹ (INR) Lakhs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard ECT™ System – 1000kW Back pressure Steam Turbine Design, Engineering, Manufacture and Supply of Turbotech make ECT™ Steam Turbine Generator System as per the technical details and scope enclosed</td>
<td>122.10</td>
</tr>
</tbody>
</table>

Price: One hundred Twentytwo lakhs and Ten thousand only.

Note:

BASIS OF OFFER:
The prices quoted by us are ex-works, Bangalore. Taxes & duties are extra and shall be charged at actual at the rates prevailing at the time of dispatch of equipment.

The present rates are as follows:

- a. Excise duty : 10.30% (presently)
- b. CST : 2% against form ‘C’ (presently)
- c. Packing & Forwarding : Extra @ 2% on basic value
- d. Freight & Insurance : Extra to customers account
- e. Octroi & Entry tax : Extra @ actual if applicable
- f. Service Tax : 10.30%

5.1 SUPERVISION FOR ERECTION & COMMISSIONING:

1.1 Tariff

- A) Per day per Service Engineer tariff for normal working of 8 Hrs per day. (48 Hrs. per week with one weekly off.) ₹ (INR) 10,000.00
- B) Overtime work. Hourly tariff, per Service Engineer, for working beyond normal working hours, weekly hours, weekly offs & holidays ₹ (INR) 1,900.00

1.2 Service charges will be computed for all the calendar days from the day our staff leaves his head quarters till the day he reports back. Any part of the day will be treated as full day.

1.3 In case our staff works on weekly off days or holidays at site, the actual number of hours will be computed as per the overtime rate mentioned above under 1.1 (B) which will be in addition to our normal per day tariff mentioned above under 1.1(A).

1.4 The days, or part thereof, spent in travelling for any visit & return, including transit halts or detentions, will also be counted as normal working days & will be charged as per 1.1(A) above.

1.5 The travel costs will be charged extra at actual. Xerox copies of documentary evidences, wherever available, will be submitted along with our invoice; otherwise, the declaration of our staff will stand for the reimbursement by you.

1.6 You shall provide lodging (single & furnished) & boarding to our staff on free of cost basis, otherwise these costs will also be charged extra at actual with documentary evidences wherever available.

1.7 Conveyance during traveling will be charged extra at actual. You shall provide local conveyance to our staff from the place of lodging to the place of work on free of cost basis; otherwise these costs will also be charged extra at actual with documentary evidences, if available.

1.8 The tariff indicated above, under 1.1 (A & B), are exclusive of any statutory taxes & duties. Any such taxes & duties, if applicable at the time of invoicing, will also be charged extra at actual. Present rate of service tax is 10.30%.

2.0 SUPPORT FROM YOU

2.1 You shall provide all skilled & unskilled manpower, tools & tackles, instruments consumables etc., on free of cost basis to our staff.

2.2 Any material, procured by our staff which is payable by us, must be vouched for by the receipts signed by our staff. In absence of such receipts, we will entertain no claim.

2.3 You shall issue weekly attendance certificate to our staff confirming the number of days & hours spent, otherwise the records of our staff shall form the basis for settling the service charges by you.

2.4 You shall inform us about the safety hazards at site. In case the site requires special safety gadgets, you shall provide the same on free of cost basis to our staff.

2.5 You shall arrange for all statutory licenses, permits, inspections etc. at your own cost.

2.6 Cash advances may be made to our staff against formal receipts and the same can be adjusted against our invoice/s.

3.0 GENERAL

3.1 The exact date of visit of our service personnel will be decided mutually.

3.2 The time schedules given by our staff are subject to variation since commencement & progress of work at site depend on various factors, which are beyond our control.

3.3 We are entitled for our reasons to withdraw or substitute our staff during execution of your Service Order at our own expense.

3.4 In case of sickness or injury to our staff, you shall provide prompt & effective first aid to our staff at no cost to us. If the situation warrants the premature return of our staff due to ill health, we shall substitute the person.
3.5 In the event of adverse social conditions at site, we reserve the right to withdraw our staff from site. The expenses incurred for such a withdrawal will also have to be borne by you. Under such circumstances we reserve the right to cancel the contract/order unilaterally without any liability, whatsoever, on us.

- **PAYMENT TERMS:**
 - Payment terms and Conditions for Supply
 - 30% advance along with the order.
 - 20% on submission of drawings.
 - Balance 50% of the order value along with all taxes, Duties & packing and forwarding charges etc...
 - Against Pro-forma invoice and readiness of the Equipment prior to dispatch
 - Payment terms and Conditions for Supervision of Erection and Commissioning
 - ₹ (INR) 2.5 Lacs advance along with the order.
 - Balance on Priorita basis on submission of invoice and bills.

DELIVERY AND COMMISSIONING
6 months from the date of receipt of purchase order and Advance.

VALIDITY:
This offer is valid for 30 days from the date and subject to re确认mation thereafter.

WARRANTY:
12 Months from the Date of commissioning or 18 Months from the date of supply, whichever is earlier. In this context, we reserve the right to qualify the defects and decide either to rectify the Turbine /components or to replace the same. The guarantee is applicable only for Turbine and not for spares and accessories.

PERFORMANCE TEST:
Performance test will be carried out within 90 days of the commissioning, if the performance test is not been able to conduct within 90 days due to reasons not attributable to TurboTech then it shall be deemed to have been carried out.

Yours Truly
For TurboTech Precision Engineering Private Limited

V. Kanagarajan
Manager – Marketing
Mbl: 944899 2684

Turbotech Proposal No: T/T/MKTE/1PITC0-3/Q-5126-1/10-11 Dated: 08th March 2011 Page 21
6.0 TERMS AND CONDITION OF SALE

1. PRICE:
 The prices quoted are ex-works, Bangalore exclusive of the following, which will be charges extra at actual as applicable at the time of delivery. The prices have been arrived at after considering the MODNAT benefits in the cost of inputs.
 - Central Excise duty: Presently 10.30%
 - Sales tax (wherever applicable)-Central Sales tax: Presently 2% against Form “C”/3% without Form “C”
 - Freight charges Extra at actuals
 - Transit insurance @ 1.0% if to be arranged by us
 - Octroi charges entry fees if applicable Extra at actuals
 - Packing and forwarding charges 2% at the time of supply
 - Any other statutory levies, at actual, as applicable at the time of supply
 - Third party inspection Extra at actual, if any

2. DELIVERY:
 All the items will be delivered within 6 Months from the receipt of your technically and commercially clear order & approved drawing whichever is later. The delivery period is EX WORKS, BANGALORE subject to force major conditions. Early deliveries, part dispatch and part payment thereof should be acceptable to you.

3. PAYMENT:
 Payment terms and Conditions for Supply:
 - 30% advance along with the order.
 - 20% on submission of drawings.
 - Balance 50% of the order value along with all taxes, Duties & packing and forwarding charges etc... against Pro-forma invoice and readiness of the Equipment prior to dispatch
 Payment terms and Conditions for Supervision of Erection and Commissioning
 - ₹ (INR) 2.5 Lacs advance along with the order.
 - Balance on Pro rata basis on submission of Invoice and bills

4. DRAWING APPROVAL:
 You are requested to specify clearly in the order whether drawings for items offered are required to be approved by you prior to manufacture. If so, we will submit drawing for your approval within 4 to 5 weeks upon receipt of technically clear order and you are requested to send us the drawings duly approved within two weeks after receipt at your end. Any delay in getting approved drawings at our end will protract delivery period accordingly. Generally drawing approval is not necessary. Hence, no drawing will be offered for approval. However it will be submitted for information only.
5. INSPECTION:
 We will offer the Turbine and accessories for your inspection at our works prior to dispatch. Seven days
 advance intimation will be given to you. In case we do not hear from you, we will arrange to dispatch the
 items after testing at our works which is deemed to have been carried out in the presence of your
 representative and submit the test and guarantee certificates to you. If you insist on witnessing the test,
 interest at prevailing bank rate after seven days from the date of intimation for inspection will be charged
 to you. Your letter of intent and purchase order should clearly specify the name of inspection authorities
 for the valves.

6. INTEREST ON FINISHED GOODS:
 After inspecting the material if you don’t release dispatch clearance within seven days, then we will be
 charging interest at prevailing bank rate on the finished goods.

7. DISPATCH:
 All items will be dispatch on SELF freight TO-PAY basis through our bank approved road transporters only.
 You are requested to furnish road permit form, if any, along with your order. Please note any demurrage
 due to delay in retiring the documents and handling over the consignee copy of I.R. to the transporter will
 be to your account. Dispatch instructions / details must be furnished in your order.

8. INSURANCE:
 We will cover insurance with our underwriters, M/s New India Assurance Company Ltd., Mumbai. In case
 of any discrepancy damage observed on items at the time of receipt at your end, following is required to
 be taken by you:-

 a. The damage / discrepancies should be notified to us telegraphically within 7 days of receipt /
 collection.

 b. The open delivery certificate from the carriers should be sent to us.

 c. The letter of authority from consignee for our claiming the equivalent amount for the damage /
 discrepancy observed should be sent to us.

 d. Damaged items / discrepancy on these items should be shown to the surveyor from the nearest
 branch office of M/s New India Assurance Company Ltd. for obtaining survey report.
9. **WARRANTY:**
All our equipment is tested before dispatch and therefore can be depended upon for long trouble free service. We undertake to make good by replacement or repair, defects arising out of faulty design, material or workmanship, within eighteen months of the date of dispatch or twelve months from the date of commissioning, whichever is earlier. Providing that if we so require, the parts in respect of which complaint is made, must be sent at Purchaser’s expense to our works before liability can be entertained.
Electrical components such as instruments such as pressure gauges, thermometers, RTDs, etc., are not covered under this warranty.
Bought out components other than those falling in the categories mentioned above are guaranteed by us only to the extent of guarantees given to us by our suppliers.
This warranty will be valid subject to:
1. Installation having been completed within 3 months of dispatch of the equipment or alternatively stored with care without damage.
2. The equipment or part thereof not being subject to accident alteration, abuse or misuse.
3. Installation has been made in a proper manner as per our Installation Manual.
4. The equipment being operated and maintained as per our Operation and Maintenance Manual and other operating instructions.

10. **ORDER CANCELLATION:**
Modification or cancellation of order cannot be accepted and is subject to our written consent. The purchaser will be liable to pay for all materials, overhead expenses and time spent on work already carried out prior to such modification or cancellation.

11. **BILLING:**
Please note CED will be charged on FOR PRICE / EX WORKS including Inspection Charges, if any, CST/VAT (wherever applicable) will be charged thereafter.

12. **CLAIMS:**
Ours is a multi-division / multi-product company. It should be specifically noted that no claim against this contract can be adjusted, appropriated, withheld or recovered from the amount against any other contracts for any item whatsoever.

13. **FORCE MAJEURE CONDITION:**
Delivery of equipment is subject to force de majeure cause by which it means causes such as war, invasion, civil disobedience, government orders or restrictions, strikes, lockout, riots, fires, epidemics, sabotages, accidents, breakdown of machinery, delay or inability to obtain labor, raw materials or any other causes whatsoever beyond our reasonable control affecting us or our subcontractors and Suppliers, etc.
14. LIABILITY/CONSEQUENCES

Notwithstanding any other provision in the purchase order or elsewhere to the contrary, in no event shall Vendor or its suppliers be liable, whether arising under contract, tort (including negligence), strict liability or otherwise, for loss of anticipated profits, loss by reason of plant shutdown, non-operation or increased expense of operation, service interruption, cost of purchased or replacement Power, claims of purchaser’s customers, sub-contractors or suppliers, cost of money, loss of use of capital or revenue, or for any special, incidental, indirect or consequential loss or damage of any nature arising at any time or from any cause whatsoever.

15. ARBITRATION:

If at any time there should be any question, dispute or difference or if any contractual obligation arising out of this contract is subject to the jurisdiction of courts at Bangalore.

16. PERFORMANCE TEST:

Performance test will be carried out within 90 days of the commissioning. If the performance test is not been able to conduct within 90 days due to reasons not attributable to TurboTech then it shall be deemed to have been carried out.

17. OTHERS

Please specify all such statutory and regulatory requirements, as applicable for the products application and / or country. If the same are not informed to us, we consider the same are not applicable for the product enquired / offered.
